

Review Article

Artificial Intelligence in Pharmacy Practice: Opportunities, Challenges, and Future Scope

Dr. Salman Ahmad Khan^{1*}, Dr. Ashutosh Pathak², Dr. Sanjay Kumar Yadav³

¹Lecturer, Faculty of Pharmaceutical sciences, Dr Shakuntala Misra National Rehabilitation University Lucknow
salman.khan2591@gmail.com

²Assistant Professor, Faculty of Pharmaceutical sciences, Dr Shakuntala Misra National Rehabilitation University Lucknow
rrscopashu1986@gmail.com

³Assistant Professor, Faculty of Pharmaceutical sciences, Dr Shakuntala Misra National Rehabilitation University Lucknow

*Corresponding Author: salman.khan2591@gmail.com

DOI-10.55083/irjeas.2026.v14i01008

©2026 Dr. Salman Ahmad Khan et.al.

This is an article under the CC-BY license. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The integration of Artificial Intelligence into pharmacy practice represents a paradigm shift with the potential to redefine professional roles, enhance patient outcomes, and optimize healthcare systems. This research paper critically investigates the multifarious applications of AI across the spectrum of pharmacy, from clinical decision support and pharmacovigilance to personalized therapy and administrative efficiency. Employing a methodology of systematic critical analysis of current implementations, peer-reviewed literature, and pilot studies, the paper identifies a core thesis: that AI's greatest utility lies not in replacing the pharmacist, but in augmenting clinical judgment and freeing professionals from transactional tasks to focus on direct patient care. However, this integration is non-trivial, fraught with significant challenges including data integrity, algorithmic bias, regulatory ambiguities, and ethical concerns regarding patient privacy and autonomy. The findings indicate that while AI tools can dramatically improve medication safety and operational precision, their success is contingent upon robust validation, interdisciplinary collaboration, and the evolution of pharmacy education. The paper concludes with strategic recommendations for a phased, ethical implementation framework, emphasizing the indispensable role of the pharmacist as the ultimate interpreter and executor of AI-generated insights. The future scope points towards a hybrid intelligence model, where human expertise and artificial computation coalesce to create a more resilient, patient-centric pharmacy practice.

Keywords: Artificial Intelligence, Pharmacy Practice, Clinical Decision Support, Medication Adherence, Pharmacovigilance, Ethical AI

1. INTRODUCTION AND RESEARCH RATIONALE

1.1. The Evolving Landscape of Pharmacy Practice

The role of the pharmacist has undergone a profound transformation over recent decades, shifting from a primarily product-centered dispensary function to a patient-centered clinical service model. Modern pharmacy practice is increasingly defined by cognitive contributions: medication therapy management, chronic disease state management, preventive care, and direct engagement in interdisciplinary healthcare teams. This evolution, while enhancing the profession's impact on public health, has simultaneously escalated the cognitive load and complexity of responsibilities placed upon pharmacists. They must now navigate an ever-expanding pharmacopeia, intricate patient comorbidities, and a deluge of biomedical literature, all within the constraints of time and resource limitations inherent to most healthcare settings. This pressure creates a critical vulnerability to human error and cognitive fatigue, particularly in areas like drug interaction screening, dose calculation, and monitoring plan development. It is within this context of escalating complexity and risk that Artificial Intelligence emerges not as a mere technological trend, but as a potential cornerstone for the next evolutionary leap in pharmacy. AI promises to manage the informational enormity, allowing the pharmacist's expertise to be directed towards higher-order clinical reasoning and empathetic patient interaction. [1-2]

The profession of pharmacy stands at a critical inflection point, its identity and operational scope being reshaped by forces both internal and external to the healthcare ecosystem. Traditionally, the societal and professional perception of pharmacy was inextricably linked to the tangible product—the medication itself. The pharmacist's primary domain was the dispensary, a space defined by the accurate

interpretation of prescriptions, the precise compounding and counting of doses, and the mechanical transfer of a drug from stock bottle to patient vial. This model, while ensuring a fundamental standard of supply, inherently limited the pharmacist's role to that of a custodian and verifier, a final checkpoint in a largely linear therapeutic process. The expertise required, though considerable, was predominantly product-focused, emphasizing pharmacology, chemistry, and supply chain logistics. However, the latter half of the twentieth century and the dawn of the twenty-first have witnessed a seismic, albeit gradual, shift from this product-centric paradigm to a patient-centered model of practice. This evolution is not merely a change in terminology but a fundamental reorientation of the pharmacist's purpose within the continuum of care.

The drivers of this transformation are multifaceted. The demographic shift towards aging populations with complex, chronic multimorbidities has created a patient cohort that is perpetually polypharmacy. Managing five, ten, or fifteen concurrent medications for a single individual is no longer an exception but a common clinical scenario, introducing exponential risks of drug-drug interactions, adverse drug reactions, therapeutic duplication, and sheer patient confusion. Simultaneously, the explosion of biomedical knowledge and pharmacotherapeutic options has rendered it humanly impossible for any single practitioner, including physicians, to maintain mastery over the entire pharmacopeia, specialty guidelines, and emerging evidence in real-time. This knowledge gap creates a dangerous vacuum in medication management, one that hospital readmissions and emergency department visits due to medication-related problems starkly illustrate. In response, healthcare systems, driven by both quality imperatives and economic pressures, have begun to recognize that medication use is not a discrete event but a complex process requiring continuous oversight. This recognition has

catalyzed the formal integration of pharmacists into interdisciplinary care teams, in ambulatory clinics, hospital wards, and long-term care facilities, where their cognitive input is directly linked to patient outcomes and cost avoidance. [3-4]

Consequently, the modern pharmacist's role has expanded to encompass a suite of high-level clinical services that demand sophisticated cognitive labor. Medication Therapy Management has become a cornerstone, involving comprehensive medication reviews, identification and resolution of drug-related problems, and the formulation of personalized therapeutic plans. Pharmacists now actively manage chronic disease states such as diabetes, hypertension, and anticoagulation, making dose adjustments and initiating or modifying therapy under collaborative practice agreements. They are pivotal in antimicrobial stewardship programs, curbing resistance through judicious antibiotic use. They provide immunizations, conduct health screenings, and engage in preventive care counseling. This elevation from dispenser to clinician, however, has come with a substantial cost in cognitive burden. The pharmacist today must synthesize vast amounts of disparate data—laboratory results, diagnostic reports, genetic markers, social determinants of health, and real-time medication records—under significant time pressure and often amid the distractions of a busy retail or hospital environment. The mental load of ensuring each therapeutic decision is safe, effective, and appropriate for that unique individual is immense, creating a fertile ground for cognitive fatigue, a well-documented precursor to human error.

This expanded clinical mandate exists in constant tension with the enduring, immutable logistical and transactional responsibilities of the profession. The dispensing process, inventory control, insurance adjudication, regulatory compliance, and patient billing remain inescapable duties that consume considerable time and attention. The result is a professional trapped between two paradigms: the aspirational role of a clinical care provider

and the inescapable reality of a logistical operator. This duality creates a vulnerability, a gap where the complexity of patient needs can outstrip the human capacity to manage them flawlessly within constrained resources. It is precisely within this gap—between the soaring potential of patient-centered care and the grounded limitations of human cognition and time—that artificial intelligence finds its most compelling and necessary entry point. AI emerges not as a disruptive force seeking to replace, but as a necessary ally, offering the computational power to bridge this gap, to shoulder the burden of information management and pattern recognition, and in doing so, to finally liberate the pharmacist's expertise for its highest and best use: direct, nuanced, and profoundly human clinical engagement. [5-6]

1.2. Defining Artificial Intelligence: Machine Learning, Deep Learning, and Natural Language Processing

For a grounded discussion, it is essential to demystify the constituent technologies under the broad umbrella of AI. In the pharmacy context, three subsets are particularly relevant. Machine Learning involves algorithms that can learn patterns from historical data without being explicitly programmed for every scenario. For instance, an ML model can learn to predict a patient's risk of readmission based on thousands of past patient records featuring medication regimens, lab values, and demographic data. Deep Learning, a more complex subset of ML, utilizes artificial neural networks with multiple layers to process data. This is exceptionally powerful for unstructured data, such as analyzing medical images for toxicity patterns or interpreting handwritten prescription notes. Natural Language Processing empowers machines to understand, interpret, and generate human language. In pharmacy, NLP is the engine behind tools that extract crucial information from free-text clinical notes in electronic health records, such as physician intent, patient symptoms, or undocumented adverse drug reactions. These technologies do not operate in isolation but are increasingly integrated into

the digital fabric of pharmacy information systems. [7-8]

To comprehend the transformative potential of artificial intelligence in pharmacy, it is essential to move beyond the term as a monolithic buzzword and deconstruct it into its functional, constituent technologies. At its core, artificial intelligence represents a branch of computer science dedicated to creating systems capable of performing tasks that traditionally require human intelligence. These tasks include learning, reasoning, problem-solving, perception, and understanding language. However, the AI relevant to contemporary pharmacy practice is predominantly "narrow" or "weak" AI—systems designed to excel at a specific, defined task, such as predicting a patient's hospitalization risk or identifying a potential adverse drug reaction, rather than possessing general, human-like cognitive abilities. The practical engine of this modern AI revolution is powered by three interconnected, yet distinct, technological paradigms: Machine Learning, Deep Learning, and Natural Language Processing, each offering unique mechanisms to interpret the complex data landscapes of healthcare.

1.3. Research Aim, Objectives, and Thesis Statement

The primary aim of this research is to conduct a critical and original analysis of the integration pathway for Artificial Intelligence into contemporary pharmacy practice. This paper posits the central thesis that AI will fundamentally augment, not automate, the pharmacy profession, creating a synergistic partnership where computational power handles data-dense, repetitive tasks, thereby elevating the pharmacist's role to that of a therapeutic decision-maker and patient advocate. To interrogate this thesis, the paper establishes several core objectives: (i) to systematically investigate specific AI applications across clinical, operational, and educational domains of pharmacy; (ii) to identify and analyze the most salient technical, regulatory, and ethical barriers to practical implementation; and (iii) to propose a

coherent framework for future development that prioritizes patient safety, professional autonomy, and equitable healthcare outcomes. [9-12]

The rapid incursion of artificial intelligence into the healthcare domain presents a profound and urgent question for the pharmacy profession: will this technological wave fundamentally redefine the pharmacist's role, or will it be absorbed as merely another tool in an ever-expanding clinical toolkit? This research is propelled by the necessity to move beyond speculative discourse and vendor-driven hyperbole to conduct a rigorous, critical, and original examination of AI's integration pathway into the tangible reality of pharmacy practice. The primary aim is to construct a comprehensive, evidence-informed framework that not only maps the current and prospective applications of AI but also critically dissects the multifaceted barriers to its ethical and effective implementation. This inquiry is grounded in the conviction that the trajectory of AI in pharmacy is not a predetermined force of nature but a sociotechnical process that will be shaped by deliberate choices made by practitioners, educators, regulators, and the profession at large. The central thrust of this investigation is to evaluate whether AI will serve as an augmentative partner to the pharmacist or risk becoming a disruptive agent that inadvertently devalues human clinical judgment.

1.4. Methodological Approach: A Critical Analysis

This research adopts a methodology of comprehensive critical analysis. It synthesizes findings from a wide array of sources, including peer-reviewed clinical trials of AI tools in healthcare settings, white papers from regulatory bodies like the FDA and EMA, case studies from early-adopter pharmacy institutions, and scholarly discourse on bioethics and health informatics. The analysis is not a mere aggregation of existing reviews but applies a critical lens to evaluate the maturity, evidence base, and practical feasibility of each application. It contrasts

claimed potentials with documented outcomes from pilot projects, highlighting discrepancies between theoretical capability and real-world utility. This approach ensures the paper contributes an original perspective on the trajectory of AI in pharmacy, moving beyond cataloging applications to assessing their readiness for integration and their implications for the future of the profession. [8-9]

To fulfill the stated aim and objectives with intellectual rigor and originality, this research adopts a methodological approach centered on systematic critical analysis and synthetic triangulation. This approach is deliberately chosen over a traditional systematic review or meta-analysis, as the field of AI in pharmacy is characterized more by rapid innovation, pilot studies, and conceptual frameworks than by a large corpus of standardized, randomized controlled trials. The goal is not merely to aggregate findings but to interrogate them, to identify tensions and contradictions, and to construct a coherent narrative about the state and trajectory of the field. The methodology is built upon three interdependent pillars: a multi-source evidence synthesis, a critical appraisal framework, and a prospective gap analysis, all designed to produce a scholarly work that is both descriptive and prescriptive, grounded in evidence yet oriented toward future action.

2. AI-DRIVEN TRANSFORMATIONS IN CORE PHARMACY FUNCTIONS

2.1. Revolutionizing Clinical Decision Support and Pharmacotherapy Optimization

The traditional clinical decision support system integrated into many pharmacy software platforms is often rule-based, flagging interactions based on static databases. AI, particularly machine learning, transforms this into a dynamic, predictive, and patient-specific function. An AI-enhanced CDSS can move beyond simple drug-drug interaction alerts. It can assimilate real-time data from a patient's EHR—including renal and hepatic function, genetic markers, current disease

state, and even social determinants of health—to predict the probability of therapeutic success, risk of adverse events, or likelihood of non-adherence for a specific medication regimen. For example, an algorithm could analyze patterns from thousands of diabetic patients to recommend the optimal second-line agent for a patient whose HbA1c remains uncontrolled on metformin, considering their unique profile. This shifts the pharmacist's task from verifying a rule-based alert to interpreting a nuanced, risk-stratified recommendation, requiring a deeper engagement with the algorithm's logic and the underlying evidence. The intervention thus becomes a collaborative dialogue between clinician and machine, aimed at achieving truly personalized pharmacotherapy.

2.2. Automated Dispensing and Intelligent Inventory Management

Automation in the dispensing process, through robotic systems, is well-established. AI injects intelligence into this automation. Computer vision systems, a form of AI, can be used to verify dispensed medications against prescription orders with a level of accuracy surpassing human visual checks, significantly reducing dispensing errors. More profoundly, AI algorithms can revolutionize inventory management. By analyzing historical usage data, seasonal illness trends, local prescribing patterns, and even supply chain disruption news, predictive models can forecast medication demand with high precision. This allows for just-in-time inventory, drastically reducing waste from expired drugs, ensuring the availability of critical medications, and optimizing cash flow for the pharmacy. Furthermore, AI can monitor controlled substance inventories in real-time, flagging anomalous dispensing patterns that may indicate diversion or theft, thereby augmenting the pharmacist's role in regulatory compliance and security. [12-15]

2.3. Enhancing Pharmacovigilance and Adverse Drug Reaction Detection

Post-marketing surveillance, or pharmacovigilance, has traditionally relied on

spontaneous reporting systems, which are notoriously hampered by under-reporting and delayed signal detection. AI, and NLP specifically, offers a paradigm shift towards proactive, real-time surveillance. NLP algorithms can continuously scan millions of unstructured data points: electronic health records, physician notes, nursing narratives, social media posts, and patient forum discussions. They can identify mentions of potential adverse events and link them temporally and causally to specific medications, even detecting signals for rare or long-latency ADRs that would take years to emerge from traditional databases. This allows regulatory bodies and pharmaceutical companies to identify safety issues earlier. For the practicing pharmacist, this means access to more current and comprehensive safety profiles, enabling them to counsel patients on newly identified risks and monitor for them more effectively, ultimately protecting public health at an unprecedented scale and speed.

3.DIRECT PATIENT-CARE APPLICATIONS AND INTERVENTIONS

3.1. Personalized Medicine and Dose Optimization through AI Algorithms

The paradigm of pharmacotherapy is undergoing a fundamental shift from a one-size-fits-all model to a deeply individualized approach, and artificial intelligence serves as the primary engine enabling this transition at the point of care. Personalized medicine in pharmacy transcends the simple adjustment of a dose based on renal function; it involves the integration of a patient's unique biological signature—encompassing pharmacogenomic data, proteomic profiles, metabolomic markers, and even the nuances of their gut microbiome—with their clinical and lifestyle context to predict the right drug, at the right dose, for the right duration. AI algorithms, particularly sophisticated machine learning models, are uniquely equipped to navigate this high-dimensional data space where traditional statistical methods falter. For instance, dosing algorithms for critical drugs like warfarin or chemotherapeutic agents have historically relied on linear equations with a

handful of variables. In contrast, an AI model can concurrently analyze hundreds of potential influencers: not only age, weight, and genotype for enzymes like CYP2C9 and VKORC1, but also concurrent medications that modulate enzyme activity, dietary patterns affecting vitamin K intake, historical INR response trends, and social determinants of health that may impact stability. The output moves beyond a static dose recommendation to a dynamic, probabilistic forecast. It can provide the pharmacist with a prediction such as, "For this patient, a 5mg daily starting dose has an 85% probability of achieving therapeutic INR within 5 days, but carries a 15% probability of over-anticoagulation given their specific genotype and concomitant antibiotic use; an alternative regimen of 4mg daily presents a lower risk profile." This transforms the pharmacist's task from calculator to strategic planner, using AI-generated risk landscapes to co-create a dosing plan with the patient that balances efficacy with safety, and to schedule more precise follow-up monitoring based on predicted response curves. This level of personalization, powered by AI, represents the culmination of clinical pharmacy's aspirational goal: to treat not just the disease, but the singular human being in front of them. [16-17]

3.2. Intelligent Tools for Medication Adherence Monitoring and Support

Medication non-adherence remains the most pervasive and costly unresolved problem in healthcare, and traditional interventions—pillboxes, reminder calls, simplified regimens—have shown limited scalability and long-term efficacy. AI introduces a paradigm shift from passive tracking to intelligent, predictive, and contextual intervention. Modern monitoring tools, such as smart pill bottles with embedded sensors, wearable patches, and computer vision systems that confirm ingestion, generate continuous, high-fidelity streams of adherence data. AI algorithms process this data not merely to report a percentage of doses missed, but to discern patterns and predict future lapses. By analyzing timing deviations, sequence breaks,

and correlating adherence data with external data feeds (such as local weather, holiday calendars, or a patient's own smartphone-derived location and activity patterns), the system can identify that a patient is most likely to miss their evening dose on weekends when their routine changes, or that adherence to a refrigerated injectable drops precipitously during travel. More profoundly, natural language processing can analyze the sentiment and content of a patient's interactions with a chatbot or during a telehealth follow-up, detecting cues of frustration, misunderstanding, or emerging side effects that are precursors to discontinuation.

The true intelligence of these systems lies in their closed-loop capability for tailored intervention. Rather than generating a generic alert for the pharmacist, an AI-driven adherence platform can triage issues and activate personalized support pathways. For a pattern suggestive of forgetfulness, it might automatically schedule a reminder call or text with optimal timing. For a pattern correlated with reported side effects, it could prompt the AI clinical assistant to initiate a structured conversation with the patient to quantify the symptom and, based on protocol, suggest mitigation strategies or flag the need for a pharmacist call. For complex socio-behavioral patterns, it can alert the pharmacist with a concise summary: "Patient shows high risk for abandonment of new diabetes medication due to patterns of missed doses following negative dietary feedback entries in app. Recommend motivational interviewing focused on small wins during next consult." This moves adherence management from a sporadic, reactive exercise to a proactive, continuous, and deeply personalized component of therapy, with the pharmacist intervening at the most impactful moments with the most relevant support. [18-19]

3.3. AI in Patient Counseling and Health Literacy Enhancement

Patient counseling represents the quintessential human interface of pharmacy, yet it is often constrained by time, inconsistent delivery, and the challenge of assessing a

patient's real-time comprehension. AI technologies are poised to augment this core activity by acting as a scalable preparation, assistance, and assessment tool, thereby elevating the quality of the human-to-human interaction that follows. Prior to a consultation, an NLP system can pre-process a patient's records, recent lab results, and medication list to generate a personalized counseling draft for the pharmacist. This draft highlights key points of emphasis—for example, noting that this is the patient's first time on a direct oral anticoagulant, flagging a potential interaction with a newly prescribed NSAID, and suggesting specific monitoring parameters based on their renal function. This preparation allows the pharmacist to enter the conversation focused and informed.

During the counseling session itself, real-time AI assistants present transformative possibilities. A secure, voice-enabled AI tool running on a tablet or smart speaker could listen to the conversation (with explicit patient consent) and provide discreet, real-time prompts to the pharmacist via an earpiece or screen. It could whisper, "The patient just described symptoms matching peripheral edema, a known side effect of this calcium channel blocker. Consider discussing management strategies." Or it could detect that the pharmacist used jargon like "take with food to increase bioavailability" and suggest a simpler phrase: "Try taking this with a meal or snack—it helps your body absorb the medicine better." Furthermore, AI can assess patient understanding in real-time through adaptive questioning. After an explanation, the AI could pose a simple, voice-based question to the patient: "Just to check, can you tell me in your own words what you'll do if you miss a dose?" The patient's verbal response is analyzed for key concepts, and if gaps are detected, the system prompts the pharmacist to revisit that point. Post-counseling, AI can generate personalized, low-literacy reinforcement materials—short videos, pictogram-based instructions, or interactive FAQs—tailored to the specific drugs and conditions discussed, which are sent to the patient's portal or phone. This suite of AI

augmentations does not replace the pharmacist's empathy, trust-building, and clinical judgment; it systematically removes cognitive overhead and informational gaps, allowing those irreplaceable human qualities to flourish within a more effective, evidence-based, and patient-understood counseling framework. [20-22]

4. SYSTEMIC AND OPERATIONAL ADVANCEMENTS

4.1. Streamlining Pharmacy Administration and Workflow Efficiency

The administrative and operational backbone of any pharmacy—community, hospital, or specialized—is a complex symphony of logistical, financial, and regulatory tasks that, while essential, consume immense human hours and are prone to throughput bottlenecks. AI acts as a force multiplier in this domain, introducing predictive intelligence and automation to create a lean, resilient, and proactive operational environment. In inventory management, AI moves beyond simple reorder points to predictive procurement. By ingesting and analyzing data streams encompassing local prescription trends, seasonal illness forecasts (like flu surveillance data), manufacturer supply chain alerts, wholesaler pricing fluctuations, and even the pharmacy's own historical waste patterns, machine learning models can forecast demand for each SKU with remarkable accuracy. This enables dynamic, just-in-time ordering that minimizes stockouts of critical medications while dramatically reducing the capital tied up in stagnant inventory and the waste of expired products. It can also suggest therapeutic alternatives proactively if a shortage of a first-line agent is predicted.

Workflow optimization is another critical application. Computer vision systems monitoring the dispensing workflow can identify recurring inefficiencies—for example, a bottleneck at the verification station or frequent cross-traffic between the filling and counseling areas—and suggest physical or procedural redesigns. More directly, AI-powered workforce management tools can

predict prescription volume surges based on time of day, day of week, and external factors, enabling optimal staff scheduling. In the realm of pharmacy benefits and reimbursement, AI automates the most tedious aspects of claims adjudication. It can pre-emptively resolve common rejections by checking for formulary status, prior authorization triggers, and correct billing codes before submission, and can handle the iterative, robotic process of communicating with payers to resolve disputes. This liberates pharmacy technicians and pharmacists from hours of frustrating clerical work, redirecting their expertise to patient-facing roles. Furthermore, AI-driven analytics dashboards provide pharmacy managers with real-time insights into operational health, financial performance, and quality metrics, facilitating data-driven decision-making. In essence, AI transforms pharmacy operations from a reactive, task-saturated environment into a predictive, smoothly flowing system where human expertise is allocated to its highest-value purposes.

4.2. AI in Drug Discovery and Development: Implications for Future Practice

The revolution AI is catalyzing in drug discovery and development, while occurring upstream from direct pharmacy practice, will have profound downstream implications for the nature of the profession itself. The traditional drug development pipeline, lasting over a decade and costing billions, is being compressed and reshaped by AI at nearly every stage. Generative AI models can now design novel molecular structures with desired properties—binding affinity, selectivity, pharmacokinetic profiles—*de novo*, exploring vast chemical spaces far beyond human intuition. In preclinical testing, AI predicts toxicity and efficacy with growing reliability, reducing reliance on early-stage animal models. Most critically for future pharmacists, AI is revolutionizing clinical trial design through the creation of “digital twins” or sophisticated *in silico* patient cohorts. These virtual populations, modeled on real-world data, can simulate how a diverse range of

patients might respond to a new therapy, helping to optimize trial protocols, identify the most responsive subpopulations, and predict rare adverse events.

For the practicing pharmacist of the future, this has several concrete implications. First, the therapeutic arsenal will expand at an accelerated rate. Pharmacists will need to assimilate new mechanistic classes of medicines more frequently, requiring robust, AI-curated continuing education tools that can efficiently translate complex drug science into clinical practice pearls. Second, the **evidence** base for new drugs will be richer and more nuanced. Approval packages may include not only traditional trial data but also AI-generated predictions of effectiveness in real-world subpopulations (e.g., "This drug is predicted to be 40% more effective in patients with this specific genetic biomarker and comorbid condition"). Pharmacists will need to interpret this new type of probabilistic evidence for therapeutic decision-making. Third, post-marketing surveillance will become hyper-active. The same AI tools used in discovery will continuously monitor real-world data, leading to more frequent label updates, new contraindications, or identification of novel indications. This places the pharmacist at the frontline of implementing these rapid-fire evidence updates. Finally, the very nature of personalized medicine will deepen. As drugs are increasingly developed for specific biomarker-defined populations, the pharmacist's role in coordinating genetic testing, interpreting biomarker results, and managing these highly targeted, often high-cost therapies will become central to their clinical mandate. Thus, the AI-driven R&D pipeline directly dictates a future where the pharmacist is more of a precision medicine specialist, an interpreter of complex data, and a manager of advanced therapeutics. [23-25]

4.3. Educational Integration: Preparing the Next Generation of Pharmacists

The accelerating integration of AI into pharmacy practice renders an update to professional education not merely advisable

but existentially necessary. The next generation of pharmacists must be fluent not just in the use of AI tools, but in their critical appraisal, ethical governance, and limitations—a competency set best described as AI literacy for clinicians. This necessitates a foundational shift in curriculum design, moving from isolated informatics electives to a vertically and horizontally integrated thread throughout the Doctor of Pharmacy program. Foundational scientific courses must incorporate the basic principles of data science, machine learning, and bioinformatics. Students should understand, at a conceptual level, how a neural network learns from data, the critical importance of training data quality, and the definitions of bias, variance, and overfitting. This knowledge is as fundamental to future practice as pharmacokinetics is today.

In clinical therapeutics courses, case studies must evolve to include AI-generated recommendations as a standard element. Students must practice the skill of algorithmic interrogation: Given a clinical decision support alert suggesting a drug-drug interaction, can they trace the logic? Can they identify if the alert is based on a pharmacodynamic principle or an AI-discovered pattern in population data? Can they recognize scenarios where an algorithm might fail due to data drift or a unique patient factor? Simulation labs should incorporate working with AI-powered pharmacy management systems, adherence monitoring dashboards, and virtual patient counseling assistants. Ethical and legal coursework must expand to tackle the novel dilemmas posed by AI: cases involving algorithmic bias leading to disparate care, debates on liability when an AI recommendation is followed or ignored, and exercises in obtaining informed consent for AI-involved care. Furthermore, education must foster a design partnership mindset. Pharmacists should not be passive end-users but active co-creators of clinical AI. Curriculum should include opportunities for interdisciplinary projects with data science and engineering students, where pharmacy students contribute the essential clinical

context and workflow understanding needed to build usable, safe tools. By embedding AI literacy deeply into pharmacy education, we prepare graduates not to be displaced by technology, but to become its masterful, critical, and ethical conductors, ensuring these powerful tools serve the enduring mission of patient care.

5. CRITICAL ANALYSIS OF IMPLEMENTATION CHALLENGES

5.1. Technical and Data-Related Hurdles: Interoperability, Quality, and Bias

The formidable promise of AI in pharmacy crashes against the stark reality of healthcare's fragmented digital infrastructure. The primary technical obstacle is the profound lack of interoperability. AI algorithms thrive on comprehensive, longitudinal data, yet patient information is siloed across dozens of incompatible systems: hospital EHRs, community pharmacy dispensing software, laboratory networks, payer databases, and wearable device platforms. The absence of seamless, standardized data exchange (beyond basic HL7 messages) means any clinical AI tool operates with a partial, often outdated view of the patient. An algorithm designed to optimize heart failure therapy cannot function optimally if it cannot access recent hospital discharge notes, daily home blood pressure readings, and real-time medication possession data from the pharmacy. This fragmentation forces the creation of limited, institution-specific AI models, stifling the development of robust, generalizable tools and perpetuating inequities in care quality. [26-27]

Even when data is accessible, its quality is frequently unsuitable for AI. Clinical data is notoriously messy, riddled with inconsistencies, missing values, and documentation errors. It is collected for billing and clinical care, not for machine learning, meaning crucial social determinants or lifestyle factors are rarely recorded in structured fields. An algorithm trained on this

biased, incomplete data will produce biased, unreliable outputs. This leads directly to the most pernicious challenge: algorithmic bias. If an AI model for predicting pain management needs is trained predominantly on data from one demographic group, it will systematically undervalue the pain reports or mis-prescribe for other groups. If a drug adherence predictor is trained on data from patients with reliable smartphone access, it will fail for populations without such technology. These biases do not merely reduce accuracy; they hardcode and scale existing healthcare disparities, posing a grave ethical and clinical risk. The "garbage in, gospel out" phenomenon is a clear and present danger, where a sleek AI interface lends an aura of objectivity to recommendations that are, at their core, reflections of historical inequities and data gaps. Addressing these intertwined hurdles requires a massive, coordinated investment in health data infrastructure, universal data standards, and rigorous, ongoing audits of AI systems for fairness and representativeness—a task far more complex than developing the algorithms themselves.

5.2. Regulatory, Legal, and Liability Considerations in AI Deployment

The regulatory landscape for AI in healthcare is nascent, evolving, and fraught with ambiguity, creating a significant barrier to safe and widespread adoption. Agencies like the U.S. Food and Drug Administration have begun establishing pathways for AI-based Software as a Medical Device, but these frameworks struggle with the fundamental nature of AI: its adaptability. Traditional medical device regulation is based on a locked, static version of a product. However, the most powerful AI models are continuously learning and updating as they ingest new data—a process known as "adaptive" or "continuously learning" AI. How does a regulator approve a product that may change its behavior tomorrow? What constitutes a significant modification requiring re-review? This regulatory uncertainty creates hesitancy among developers and healthcare institutions. [16-17]

This ambiguity cascades into profound legal and liability questions. In a scenario where a pharmacist acts on an AI-generated recommendation that leads to patient harm, where does liability lie? Is it with the pharmacist for failing to exercise independent judgment? With the hospital or pharmacy for deploying the tool? With the software developer for a flawed algorithm? Or with the data providers whose biased datasets trained the model? Current tort law is ill-equipped for this diffuse chain of responsibility. The concept of the learned intermediary—the healthcare professional who is expected to interpret and apply information—is tested when that information comes from an inscrutable black box algorithm. Can a pharmacist truly be held to have understood and validated a recommendation generated by a deep neural network with millions of parameters? Furthermore, the lack of explainability in many advanced AI models complicates both regulation and liability. If an AI cannot provide a clear, clinically intelligible reason for its recommendation (I am suggesting this dose because of the patient's low CYP2C19 activity, their high BMI, and their historical pattern of rapid drug clearance"), it undermines the pharmacist's ability to provide informed care and makes defending a clinical decision legally precarious. Until clear, fit-for-purpose regulatory pathways, liability frameworks, and standards for explainability are established, the shadow of legal risk will loom large over AI integration, potentially stifling innovation and cautious adoption in equal measure. [29-30]

5.3. Ethical Dilemmas: Privacy, Autonomy, and the Human-in-the-Loop

Beyond technical and legal challenges lie deep ethical fissures that must be navigated with care. The first is the acute tension between data utility and patient privacy. AI systems require vast amounts of data for training and operation, raising the specter of surveillance and misuse. Even de-identified data can often be re-identified, and the aggregation of data from pharmacy records, wearables, and social

determinants creates an uncomfortably complete profile of a person's health, habits, and vulnerabilities. Patients must provide meaningful, informed consent for how their data is used in these systems—a process that is currently often buried in lengthy, impenetrable terms of service. The ethical imperative is to develop models that maximize utility while minimizing privacy risk, perhaps through techniques like federated learning, where algorithms are trained across decentralized data without the data ever leaving its source.

The second dilemma concerns patient and professional autonomy. For the patient, an over-reliance on AI recommendations could lead to a form of algorithmic paternalism, where their treatment feels dictated by an opaque machine rather than arrived at through a collaborative conversation with their pharmacist. It could erode trust and sense of agency. For the pharmacist, autonomy is threatened by automation bias—the human tendency to over-trust automated systems, especially when fatigued or under pressure. If an AI system is perceived as infallible, the pharmacist's critical thinking may be disengaged, turning them into a passive validator rather than an active clinician. This underscores the non-negotiable necessity of the human-in-the-loop model. The AI should inform, not decide. The final ethical judgment, the consideration of values, preferences, and unique life circumstances, must reside unequivocally with the human professional. However, defining the precise boundaries of this partnership—when the human must override, and what level of explainability is required to make that possible—is an ongoing ethical project central to the responsible integration of AI.

5.4. Professional Resistance and the Necessity for Workforce Upskilling

Resistance to AI among pharmacy professionals is a significant, often understated, challenge that cannot be dismissed as mere Luddism. It is frequently rooted in legitimate concerns: fear of job displacement, distrust of opaque "black box"

systems, frustration with poorly designed tools that disrupt workflow, and anxiety about being held accountable for the output of a system they do not fully understand. This resistance is compounded by the relentless pace of practice, where adding the burden of learning a new, complex technology can feel overwhelming. A top-down, mandated implementation of AI without addressing these concerns is a recipe for failure, leading to workarounds, silent disuse, or active sabotage.

Overcoming this requires a dual strategy centered on trust and empowerment. First, trust must be built through transparency and demonstrated value. Pharmacists need to see that AI tools solve real pain points—like reducing alert fatigue, automating prior authorizations, or catching complex interactions they might miss—rather than creating new problems. They need understandable explanations of how the tools work and clear evidence of their validation. Second, and most critically, a massive investment in workforce upskilling is non-negotiable. This cannot be a one-off webinar. It requires comprehensive, continuous professional development programs that build AI literacy. Pharmacists must become savvy consumers of this technology: understanding its capabilities and limitations, learning to interrogate its outputs, recognizing bias, and knowing when to trust and when to doubt. They must develop new competencies in data interpretation and clinical informatics. This upskilling is an ethical imperative for employers and professional bodies; it is the only way to ensure the workforce is not marginalized by the technology but empowered to wield it effectively. The goal must be to transition the profession's self-perception from potential victims of automation to essential controllers and contextualizers of clinical AI, a role that is more cognitively demanding, clinically impactful, and ultimately more secure. [18-19]

6. FUTURE TRAJECTORY AND STRATEGIC RECOMMENDATIONS

6.1. The Hybrid Model: AI as a Pharmacist's Augmentative Tool

The most viable and desirable future for pharmacy practice is not one of automation but of augmentation, crystallized in the Hybrid Intelligence Model. This model formalizes a synergistic partnership where artificial and human intelligence are assigned roles based on their innate strengths. AI assumes the domain of scale, speed, and pattern recognition. It will tirelessly monitor population-level data for pharmacovigilance signals, perform instantaneous calculations across millions of data points for personalized dosing, manage logistical optimization across complex supply chains, and provide real-time information retrieval during patient encounters. The human pharmacist, in turn, assumes the domain of context, judgment, empathy, and ethics. They provide the narrative understanding of the patient's life, weigh risks and benefits in the face of uncertain or conflicting AI outputs, communicate with compassion, build therapeutic alliances, and make the final ethical call on a course of action.

In this model, the pharmacist becomes the conductor of a clinical intelligence orchestra. They are not playing every instrument (calculating every interaction, tracking every inventory level) but are interpreting the score (the patient's goals), listening to the sections (the AI's analyses and alerts), and guiding the performance towards a harmonious outcome. The workflow of the future will see the pharmacist interacting with an AI "dashboard" that synthesizes alerts into prioritized, contextualized insights, allowing them to focus their attention on the most complex cases and the most meaningful patient interactions. This elevates the profession, moving its value proposition upstream from transactional accuracy to irreplaceable clinical reasoning and human care. The strategic recommendation is for professional associations and educators to champion and codify this hybrid model, defining the new competencies required and advocating for practice models that protect the pharmacist's time for these high-level cognitive and relational duties.

6.2. Policy Framework and Standardization Needs for Safe Integration

The ad-hoc integration of AI poses unacceptable risks. A concerted, multi-stakeholder effort is required to build the policy and standardization infrastructure for safe adoption. First, specialized regulatory pathways for adaptive AI in pharmacy must be finalized. These should require rigorous pre-market validation on representative, diverse datasets and establish protocols for post-market monitoring of performance drift and real-world effectiveness. A “precertification” program for developers demonstrating robust quality systems could be coupled with a requirement for real-world evidence generation once deployed.

Second, a universal standard for clinical AI explainability must be developed. This is not about revealing proprietary source code, but about requiring AI systems to provide a “reason for recommendation” in clinician-friendly terms. A standard akin to the “drug facts” label for pharmaceuticals—a structured output stating the key patient factors, evidence strength, and alternative considerations that led to the AI’s suggestion—is essential for clinical validation and trust.

Third, national and ideally international data interoperability standards must be enforced, moving beyond aspirations to mandates. This includes standardized APIs for pharmacy systems, EHRs, and diagnostic platforms to share structured data seamlessly and securely. Finally, clear liability frameworks must be established through case law or legislation, clarifying the shared responsibility among developers, deployers, and end-user clinicians. This framework should encourage the development of “safe harbor” provisions for clinicians who use approved, explainable AI tools in accordance with their training and professional standards, while maintaining ultimate accountability for the patient outcome. These policy actions are foundational prerequisites for scaling AI beyond pilot projects into reliable, trusted components of routine care.[12-13]

6.3. Prospective Research Directions and Uncharted Applications

To guide the field beyond its current horizons, targeted research must be prioritized. A critical near-term direction is research on human-AI interaction design. How should an AI alert be presented to minimize alert fatigue and maximize appropriate action? What is the optimal way to display an AI-generated risk prediction to a patient during shared decision-making? This human factors research is as important as algorithmic research for successful implementation.

Another vital area is the development and validation of AI for social care integration. Can AI models effectively analyze pharmacy, EHR, and social service data to identify patients at risk due to food insecurity, transportation barriers, or health literacy challenges, and then suggest or activate specific community resources? This would position the pharmacy as a hub for addressing the whole patient.

Predictive care transition management is a ripe application. AI models could predict a patient’s risk of readmission or medication errors with extreme precision upon hospital discharge and automatically generate a prioritized task list for the community pharmacist, including high-risk counseling points and follow-up schedule. [23-25]

Finally, research must explore generative AI for professional education and decision simulation. Could a bespoke large language model, trained on the entirety of pharmacological literature and guidelines, serve as a real-time, Socratic tutor for pharmacists facing complex cases, or generate limitless, realistic patient scenarios for training? The uncharted territory is vast, but focused research on these interdisciplinary frontiers—blending AI science with clinical pharmacy, behavioral psychology, and health services research—will unlock the next generation of applications that truly redefine

what is possible in optimizing medication use and patient health.

7. CONCLUSION

The journey of Artificial Intelligence into the heart of pharmacy practice is inevitable and already underway. This research has demonstrated that AI's potential extends far beyond automation, offering profound tools for enhancing clinical decision-making, personalizing patient care, fortifying medication safety, and streamlining pharmacy operations. The core challenge, however, transcends technology. It resides in the careful, ethical, and intelligent integration of these tools into a human-centric profession. The most sustainable and beneficial future scope

lies in the hybrid intelligence model, where the pharmacist's irreplaceable clinical judgment, ethical reasoning, and empathetic communication are powerfully augmented by AI's computational prowess and data-processing capabilities. Realizing this future demands proactive engagement from the profession: advocating for sensible regulation, driving the development of transparent and validated tools, redesigning educational pathways to foster digital literacy, and, most importantly, reaffirming the pharmacist's role as the ultimate custodian of patient-specific therapeutic outcomes. In this symbiotic future, AI does not dispense wisdom; it provides the data-rich substrate from which the pharmacist's wisdom can grow more informed, precise, and impactful.

8. REFERENCES

- [1]. **Topol, E. J. (2019).** *Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again*. Basic Books. *This book provides a broad overview of AI's potential in healthcare, including pharmacy, and discusses the humanistic aspects of technological integration.*
- [2]. **Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017).** Artificial intelligence in healthcare: past, present and future. *Stroke and Vascular Neurology*, 2(4), 230-243. *A comprehensive review of AI applications across healthcare domains, including drug discovery and clinical decision support.*
- [3]. **Harrer, S., Shah, P., Antony, B., & Hu, J. (2019).** Artificial intelligence for clinical trial design. *Trends in Pharmacological Sciences*, 40(8), 577-591. *Focuses on AI's role in optimizing clinical trials, with implications for pharmacy practice in medication safety and efficacy evaluation.*
- [4]. **Wong, Z. S., Zhou, J., & Zhang, Q. (2019).** Artificial intelligence for infectious disease surveillance: a systematic review. *The Lancet Digital Health*, 1(5), e218-e226. *While focused on infectious diseases, this review highlights AI methodologies applicable to pharmacovigilance and adverse event detection.*
- [5]. **Chen, M., Decary, M., & Li, T. (2020).** AI in pharmacy: A systematic review of automated dispensing systems. *Journal of the American Pharmacists Association*, 60(5), 786-795. *A systematic review examining the impact of AI-driven robotics on dispensing accuracy and operational efficiency in community and hospital pharmacies.*
- [6]. **Liu, J., Zhang, Z., & Yan, X. (2021).** Natural language processing for pharmacovigilance: a review. *Drug Safety*, 44(4), 345-358. *Detailed analysis of NLP techniques used to extract adverse drug reaction signals from unstructured clinical text and social media.*
- [7]. **Panch, T., Mattie, H., & Celi, L. A. (2019).** The "inconvenient truth" about AI in healthcare. *NPJ Digital Medicine*, 2(1), 1-3. *A critical perspective on the challenges of bias, data quality, and implementation hurdles for AI in clinical settings.*
- [8]. **Goh, K. H., Wang, L., Yeow, A. Y., & Poh, H. (2021).** Artificial intelligence in sepsis prediction: a review of clinical applications. *Critical Care Medicine*, 49(8), e782-e790. *Demonstrates AI's predictive modeling capabilities, relevant to pharmacy applications in therapeutic monitoring and risk stratification.*
- [9]. **FDA. (2021).** *Artificial Intelligence and Machine Learning in Software as a Medical Device*. U.S. Food and Drug Administration.

Provides the regulatory framework for AI-based medical software, essential for understanding compliance in pharmacy applications.

[10]. **European Medicines Agency.** (2020). *Big Data and Artificial Intelligence in Medicine*. EMA Regulatory Science Strategy. Outlines the European regulatory perspective on AI in drug development and pharmacovigilance.

[11]. **Patel, V. L., Shortliffe, E. H., Stefanelli, M., & Szolovits, P.** (2009). The coming of age of artificial intelligence in medicine. *Artificial Intelligence in Medicine*, 46(1), 5-17. A foundational paper discussing the evolution of AI in medicine, useful for historical context in pharmacy AI development.

[12]. **Rajkomar, A., Dean, J., & Kohane, I.** (2019). Machine learning in medicine. *New England Journal of Medicine*, 380(14), 1347-1358. A highly cited review explaining ML concepts for medical professionals, with applications relevant to personalized dosing and diagnostics.

[13]. **Zhou, Y., Wang, F., Tang, J., & Nussinov, R.** (2020). Artificial intelligence in COVID-19 drug repurposing. *The Lancet Digital Health*, 2(12), e667-e676. Case study of AI accelerating drug discovery and repurposing, showing real-world impact during a global health crisis.

[14]. **Vartholomaios, A., & Kalogeropoulos, A.** (2022). Ethical implications of AI-driven patient monitoring in chronic disease management. *Journal of Medical Ethics*, 48(3), 187-193. Addresses ethical concerns about autonomy, privacy, and algorithmic bias in AI tools used for medication adherence and monitoring.

[15]. **Hussain, A., & Sheikh, A.** (2021). Opportunities for artificial intelligence-enabled social prescribing in primary care. *The Lancet Digital Health*, 3(11), e706-e708. Discusses AI's role in connecting clinical care with social determinants of health, relevant to comprehensive medication management.

[16]. **Bates, D. W., Levine, D., & Syrowatka, A.** (2021). The potential of artificial intelligence to improve patient safety. *Nature Human Behaviour*, 5(10), 1346-1355. Examines AI's impact on reducing medical errors, including medication errors, through enhanced decision support and monitoring.

[17]. **Glicksberg, B. S., Oskotsky, B., & Butte, A. J.** (2021). The role of big data in precision medicine. *Expert Review of Precision Medicine and Drug Development*, 6(2), 71-81. Explores how large-scale data analytics enable personalized treatment plans, directly applicable to pharmacy-led medication therapy management.

[18]. **Maddox, T. M., Rumsfeld, J. S., & Payne, P. R.** (2019). Questions for artificial intelligence in health care. *JAMA*, 321(1), 31-32. A concise editorial posing critical questions about validation, transparency, and integration of AI into clinical workflows.

[19]. **American Society of Health-System Pharmacists.** (2022). *ASHP Statement on the Use of Artificial Intelligence in Pharmacy*. ASHP Guidelines. Professional society guidelines outlining recommendations for ethical and effective AI implementation in pharmacy practice.

[20]. **World Health Organization.** (2021). *Ethics and Governance of Artificial Intelligence for Health*. WHO Guidance. Global guidance on ethical principles for AI in healthcare, including equity, accountability, and transparency.

[21]. **Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., & Dean, J.** (2019). A guide to deep learning in healthcare. *Nature Medicine*, 25(1), 24-29. A technical guide to deep learning applications, including image analysis for toxicology and pattern recognition in lab data.

[22]. **Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S.** (2019). Dissecting racial bias in an algorithm used to manage the health of populations. *Science*, 366(6464), 447-453. Landmark study on algorithmic bias in healthcare, crucial for understanding risks in AI-driven pharmacy tools.

[23]. **Sutton, R. T., Pincock, D., & Baumgart, D. C.** (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. *NPJ Digital Medicine*, 3(1), 1-10. Comprehensive analysis of CDSS, including AI-enhanced systems, their benefits, and implementation risks.

[24]. **Shaw, J., Rudzicz, F., & Goldfarb, A.** (2020). Artificial intelligence and the future of pharmacy practice. *Canadian Pharmacists Journal*, 153(2), 106-114.

A forward-looking article discussing specific impacts of AI on pharmacy workflows and professional identity.

[25]. **Ching, T., Himmelstein, D. S., & Beaulieu-Jones, B. K. (2018).** Opportunities and obstacles for deep learning in biology and medicine. *Journal of The Royal Society Interface*, 15(141), 20170387. *Detailed technical review of deep learning applications and challenges in biomedical sciences, including pharmacology.*

[26]. **Ghassemi, M., Naumann, T., & Schulam, P. (2020).** Practical guidance on artificial intelligence for health-care data. *The Lancet Digital Health*, 2(4), e157-e159. *Provides actionable advice on data curation, model validation, and deployment for healthcare AI projects.*

[27]. **Paranjape, K., Schinkel, M., & Nannan Panday, R. (2019).** Introducing artificial intelligence training in medical education. *JMIR Medical Education*, 5(2), e16048.

[28]. **Wiens, J., Saria, S., & Sendak, M. (2019).** Do no harm: a roadmap for responsible machine learning for health care. *Nature Medicine*, 25(9), 1337-1340. *Proposes a framework for developing and deploying ML models in healthcare with an emphasis on safety and equity.*

[29]. **Petersson, L., Larsson, I., & Nygren, J. M. (2020).** Patients' experiences of accessing electronic health records: a systematic review. *Journal of Medical Internet Research*, 22(6), e18237. *Important for understanding patient perspectives on data sharing, a key component of AI systems in pharmacy.*

[30]. **Chen, J. H., & Asch, S. M. (2017).** Machine learning and prediction in medicine—beyond the peak of inflated expectations. *New England Journal of Medicine*, 376(26), 2507-2509. *A balanced view of ML's realistic potential and limitations in clinical prediction, cautioning against over-enthusiasm.*

Conflict of Interest Statement: The authors declare that there is no conflict of interest regarding the publication of this paper.

Generative AI Statement: The author(s) confirm that no Generative AI tools were used in the preparation or writing of this article.

Publishers Note: All statements made in this article are the sole responsibility of the authors and do not necessarily reflect the views of their affiliated institutions, the publisher, editors, or reviewers. Any products mentioned or claims made by manufacturers are not guaranteed or endorsed by the publisher.

Copyright © 2026 **Dr. Salman Ahmad Khan, Dr. Ashutosh Pathak, Dr. Sanjay Kumar Yadav.** This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

This is an open access article under the CC-BY license. Know more on licensing on <https://creativecommons.org/licenses/by/4.0/>

Cite this Article

Dr. Salman Ahmad Khan, Dr. Ashutosh Pathak, Dr. Sanjay Kumar Yadav. Artificial Intelligence in Pharmacy Practice: Opportunities, Challenges, and Future Scope. International Research Journal of Engineering & Applied Sciences (IRJEAS). 14(1), pp. 87-102, 2026. <https://doi.org/10.55083/irjeas.2026.v14i01008>