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Abstract: Traditional cloud deployment models such as containers and virtual 

machines (VMs) have long supported AI/ML workloads in high-performance 

computing (HPC), but they often suffer from inefficiencies including over-

provisioning, high operational costs, and limited scalability for bursty or real-time 

tasks. To address these limitations, this study conducts an empirical benchmarking of 

serverless architectures against traditional models across leading cloud providers, 

with a focus on evaluating latency, throughput, scalability, and cost-efficiency. Four 

representative AI/ML workloads—image classification, natural language processing 

(NLP), time series forecasting, and recommendation systems—were deployed under 

varying concurrency levels to capture realistic performance dynamics. Results show 

that serverless significantly outperforms containers and VMs in specific contexts, 

achieving the lowest latency of 84 ms for NLP workloads, the highest throughput of 

1000 requests/sec at 150 concurrent users, and the most cost-effective profile with a 

one-year Total Cost of Ownership (TCO) of $28,000, compared to $36,000 for 

containers and $47,000 for VMs. While cold-start delays of approximately 300 ms 

remain a trade-off, their impact is manageable for most inference tasks. By 

systematically quantifying these performance and economic advantages, the study 

contributes to the growing body of knowledge on scalable AI infrastructure, 

positioning serverless as a practical and democratizing approach for AI-driven HPC 

applications. 
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1. INTRODUCTION 

The growing use of Artificial Intelligence (AI) 

and Machine Learning (ML) across various 

fields, including healthcare, finance, 

autonomous systems, and scientific discovery 

has largely increased pressure on scalable, 

efficient, and cost-effective sources of 

computation [1, 2]. They are highly data-

intensive and computationally-intensive 

applications, which need to process large 

amounts of data extremely quickly and re-

train models with millions or even billions of 

parameters. As the AI/ML workload increases 

in terms of scale (size) and complexity the 

organizations are addressing the architectures 

capable of delivering elasticity, high 

throughput, and dependable well without 

being prohibitively expensive [3]. Based on 

infrastructures of virtual machines (VMs) and 

clusters, the establishment of the infrastructure 

of scientific and industrial computing has long 

been carried out using widely used traditional 

models of high-performance computing (HPC) 

[4]. However, the paradigm shift to cloud-

native ecosystems and the creation of 

paradigms of serverless computing are 

restructuring the way AI/ML workloads can be 

implemented, run, and scaled in present-day 

settings [5]. Although proven in their abilities, 

VM-based HPC solutions have significant 

limitations in their deployment to modern 

AI/ML workloads [6]. Virtual cluster 

provisioning can demand significant 

configuration, lengthy launch time, and fixed 

resource assignment, and thus lacks the 

dynamism required of dynamically 

provisioned ML pipelines [7]. What is more,  

VM-based architectures are linked to increased 

operation overheads and resource  

 

underutilization, since users often over-

provision compute resources in an attempt to 

circumvent performance bottlenecks [8]. This 

inefficiency is especially expensive when 

workloads display irregular demand cycles, as 

is the case in data preprocessing, 

hyperparameter tuning, or inference. 

Moreover, scaling VMs to peak workloads can 

lead to high expenses that can be costly to 

organizations with a tight budget, hence 

traditional approaches to HPC would be more 

appealing to such organizations [9]. In this 

way, the VM-based HPC is still irreplaceable 

by other tools in some scientific simulations 

and closely integrated parallel computations, 

but it is not necessarily the best choice in the 

context of AI/ML applications in the age of 

clouds [10]. Serverless computing has been 

adopted to overcome most of these restrictions 

to have the next-generation of application 

execution models with event-sensitive, on-

demand execution framework with code logic 

developers being able to concentrate on pure 

code instead of infrastructure management 

[11]. The cloud provider in serverless 

architectures dynamically provides 

computational resources [12], such that its 

users incur only the upfront executable time of 

their workloads. Such a model is intrinsically 

cost-effective, elastic, and easy to deploy, 

making it especially attractive to AI/ML 

pipelines that need burstable performance and 

fine-scale capability  [13]. As an example, 

serverless functions may facilitate numerical 

operations, multitask model training on mini-

batches, or scale up inference services on 

demand in real-time [14]. Further, the 

infrastructure management abstraction 

facilitates operational simplicity and allows 

researchers and developers to speed up 
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experimentation and innovation without 

worrying about cluster configuration and 

maintenance. As a result, it is increasingly 

claimed that serverless computing is a viable 

alternative to (or compliments) the rather 

conventional AI/ML workloads VM-based 

HPC environment [15]. 

 

 

Figure 1: Difference among traditional and serverless cloud architecture. 

Nevertheless, even with the increasing 

popularity of serverless systems, there are still 

some major shortcomings in evaluating and 

comparing serverless to traditional HPC 

systems [16], in particular, AI/ML workloads. 

The literature is often focused on general or 

limited groups of computational workloads, 

that are not very informative about the real-

world performance, scalability [17], or the 

dynamic cost characteristics of such 

architectures used to run end-to-end ML 

pipelines [18]. Additionally, resource 

assignment has limits and overheads in 

function orchestration, and cold start latency 

make serverless execution environments 

heterogeneous, and require to be empirically 

studied. Without stringent comparative 

frameworks, organizations struggle to make 

informed decisions regarding when and how 

to use serverless models so as to benefit 

specifically, those computationally-intensive 

AI/ML models that must satisfy accuracy, 

latency, and budgetary constraints [19]. The 

present work is dedicated to the overall 

comparison of the serverless and regular VM-

based cloud-based solutions, both in 

performance and proportionality, with the 

workloads of AI/ML within the HPC setting. 

This study also strive to present hard facts on 

what each of the models is capable of best 

accomplishing, and what the models restrict 

by critically examining the execution-time, 

scalability, throughput and financial aspects of 

the exemplary AI/ML tasks. This type of 

evaluation not only bridges the current gap in 

benchmarking works, but also provides a 

choice model to scientists, clinical 

practitioners, and institutions to enhance their 

AI/ML pipelines using the current HPC-

provided cloud environments and services. 
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And finally by the study one may gain a better 

understanding of how, with the next-

generation computational paradigm, it is 

possible to offset the growing demands of 

AI/ML that will eventually lead to smarter, 

larger and cheaper cloud-based HPC services. 

 

2. BACKGROUND 

The development of computational 

infrastructures has additionally been defined 

through a slow shift between on-premise, 

monolithic high-performance computing 

(HPC) operations to accommodating models 

that are cloud-native and capable of fulfilling 

the continuously changing demands of the 

modern workload [20]. There were only 

rewarded by classic HPC sets, that were 

thought to be on-prem, tied together with 

inexpensive density of salary closely processed 

investors, dedicated interconnection and 

dedicated job programs, are pricey to deploy, 

and were scarcely scalable [21]. The structures 

of these collections not only involved costly 

investments of capital in the form of physical 

mediation, and administrative specialization, 

but can also impose restraints upon the 

amount of degrees of freedom, and hence 

could not so readily adapt flexibly to the 

unpredictable and often heterogeneous loads 

of more modern information-intensive 

applications [22]. Also cloud computing 

organizations have slowly been transitioning 

out of a staid hardware based world to 

virtualized cloud-native architectures to 

experience the principle of efficiency, elasticity, 

wilful resource pooling and pay-as-you-go to 

allow more access to traditionally exclusive 

resources with high performance 

characteristics [23]. This led to pre-

dispositioning the exploration of other 

infrastructure management models such as 

containerization and serverless execution that 

enable abstract control of the infrastructure, 

and increased portability. 

As far as serverless computing is concerned it 

is a concept shift as the developer can not only 

have management of his servers but also get a 

choice of building his own clusters. The cloud 

providers, however, can dynamically operate 

each execution environment, and they can 

only provide compute resources to run 

functions or tasks [24]. This 100% managed 

event-based model simplifies scale operations, 

is less expensive, and also allows scaling to 

very fine-grain, especially which is appealing 

to irregularly or bursty workload applications 

[25]. The unending access to containers and 

virtual machine (VMs) within the cloud setup 

permits users uniformly programmable 

environments thus, permitting robust 

mechanisms that have software dependencies 

and system configurability. Specifically, 

containers are now highly used environment 

runtimes due to their lightweight deployment, 

the simplicity of portability between platforms 

and VMs can provide a greater level of 

isolation and even support legacy applications 

[26]. Companies are providing complements 

to each other; and cloud-native ecosystems are 

being used to offer trade-offs in improved 

flexibility-control-efficiency. Both AI/ML 

workloads have computational intensity of 

model training as a key factor in comparison 

to low latency-inference requirement. Massive 

parallelism and acceleration using GPUs is 

frequently needed during training and the 

workloads of inference are more latency-

sensitive, as it will respond promptly (and 

scale gracefully) with any user load increment 

or reduction [27]. These demands mark the 

conflict between the established HPC design 

that is good at high sustained throughput and 

has low agility, and the new serverless design 

that is agile and lacks the cold start, memory 

constraints, and orchestration overhead [28]. 
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Figure 2: Significance of AI/ML in HPC 

Some earlier work on the deployment of 

cloud-based AI was focused on containerized 

and VM-based solutions, which have proven 

to be practical to execute large-scale training 

and inference. Nevertheless, there are still few 

systematic comparisons between these 

traditional frameworks and serverless 

platforms, especially in the frames of 

performance-cost trade-offs of real-life AI/ML 

pipelines [29]. The existence of this gap 

highlights the necessity of further analysis of 

serverless computing in HPC contexts to guide 

architectural decisions in future AI-based 

applications. 

 

3. PROBLEM STATEMENT 

Traditional cloud architectures, that typically 

use virtual machines and containerized 

clusters are manual to provision, are taxing to 

scale, and need significant operational scale, 

and thus are likely to cause inefficiency when 

serving on-demand AI/ML workloads. 

Although these models provide scalable 

sustained large-scale computation, they are 

poorly suited to the situation where 

computational load is 

infrequent/unpredictable and dependent on an 

event (where it is wasteful to overprovision 

the resources and thus is more costly). In the 

meantime, serverless computing presents a 

compelling alternative in computing, 

providing the benefits of auto-scaling, less 

control over infrastructure, and more 

straightforward pay per use pricing, but the 

implications for compute-intensive AI/ML 

applications remain to be seen because 

serverless computing brings with it latency 

costs due to cold starts, execution time 

restrictions, and resource restrictions. 

Although the performance, scalability, and 

cost-effectiveness of serverless and traditional 

deployment model in HPC contexts has 

become core area of concern, there has not 

been a formal and incisive investigation into 

the relative advantage of both types of 

platform. The intent in this section is to 

highlight the urgency for a focused 
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investigation to assess the effectiveness of 

serverless architecture as a viable, cost-

effective and scalable alternative for 

implementing AI/ML workloads that have 

typically been carried out in VM-based HPC 

contexts. 

1. Objectives of the Study 

 Benchmark latency and throughput of AI/ML workloads on serverless, containers, and VMs. 

 Evaluate Total Cost of Ownership (TCO) over a 1-year period. 

 Assess CPU utilization and resource efficiency. 

 Derive recommendations for workload-specific cloud deployment strategies. 

2. Research Questions 

 Does serverless provide comparable or better performance than containers and VMs? 

 Is serverless more cost-effective for AI inference workloads? 

 How does cold-start impact serverless performance in high-demand HPC scenarios? 

3. Hypotheses 

 Serverless deployments have lower latency in bursty AI tasks. 

 TCO for serverless is lower than containers and VMs in most inference scenarios. 

 Cold starts and lack of GPU support may hinder serverless performance for some tasks. 

 

4. REVIEW OF LITERATURE 

The discussion of the literature on cloud-based 

AI architecture shows that VM-based and 

container-based models evolve into serverless 

frameworks. Initial studies like Adzic et al. 

(2017) [30] and McGrath et al. (2017) [31] 

demonstrated the cost reduction and 

throughput benefits of AWS Lambda and 

Azure Functions in contrast with traditional 

VM deployments, establishing serverless as a 

disruptive technology in cloud programming. 

However, Baldini et al. (2017) [32] and 

Hellerstein et al. (2018) [33] claimed that 

serverless platforms had critical bottlenecks, 

namely cold start latency and stateless 

execution, which restricted their scaling to 

large-scale AI workloads. Conversely, Jonas et 

al. (2019) [34] and Eismann et al. (2020) [35] 

accentuated the democratization opportunities 

provided by serverless with simplified 

programming models and classified  

 

applications displaying advantages in bursty 

and event-driven workloads, therefore 

supporting the relevance of serverless to 

AI/ML inference. A case in point was the 

empirical comparison of AWS, Azure, and 

Google Cloud Functions by Wang et al (2018) 

[36] that uncovered contention issues, cold 

starts, and even bugs not mentioned in the 

documentation and that demonstrated the 

trade-offs of operation between providers. 

The latter studies attempted to solve these 

bottlenecks by making architectural 

innovations and orchestration methods. 

Wukong et al. (2020) [37] and Shahrad et al. 

(2020) [38] with the help of Carver et al. (2020) 

[37] and Azure workload characterization, 

respectively, showed how concurrency could 

be better managed and reduced latency by 

scheduling tasks with locality awareness and 

optimized scheduling. Correspondingly, Das et 
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al. (2024) [39] proposed AI-guided pre-

warming techniques to reduce cold-start, 

whereas Oakley et al. (2024) [40] proposed FSD-

Inference to eliminate serverless 

communication bottlenecks in distributed ML 

inference that achieve the HPC level of 

performance. Meanwhile, Kubernetes-based 

orchestration became integrated in a hybrid 

approach, where Petrosyan et al. (2022) [41] 

uses containers such as Docker and Singularity 

to play with HPC workloads and Peri et al. 

(2023) [42] introduces the concept of hybrid 

cloud schedulers that balance between cost 

and deadlines between serverless and 

container technologies. These papers 

demonstrate that although serverless is very 

elastic and cost efficient, containers and VMs 

are necessary to ensure control, predictability, 

and high-resource operations. 

Cost and TCO analyses have also been a 

common theme in addition to performance 

gains. Kumanov et al. (2018) [43] demonstrated 

that serverless could provide massive 

performance improvements in biomedical 

research at a very low cost, whereas the article 

by Muelle et al. (2020) [44] showed that 

serverless analytics systems such as Lambada 

could very substantially outperform 

commercial offerings by a few times. On the 

other hand, Copik et al. (2024) [45] highlighted 

that near-native performance is commonly 

demanded by HPC workloads, and resource 

disaggregation and RDMA-enabled rFaaS 

frameworks can fill the gap between low cost 

and high performance. More recently, Schmid 

et al. (2025) [46] using SeBS-Flow provided 

standardized cost and runtime diversity 

benchmarks across the 3 major cloud 

providers, AWS, Azure, and Google Cloud, a 

large gap in comparative analysis. Taken 

together, these contributions validate the idea 

that serverless is particularly well-suited to 

cost-sensitive, bursty AI/ML workloads, as 

performance-intensive and long-running tasks 

continue to be best served by containerized or 

VM-based orchestration. The new agreement 

suggests hybrid solutions have workload-

based deployment policies to balance latency, 

throughput and TCO, thus benchmarking 

activity becomes a key element in the future to 

inform the adoption. 

 RESEARCH GAP 

 Focus on microservices and web apps – Most serverless studies emphasize lightweight applications, 

leaving limited insights into compute-heavy AI/ML workloads that demand high throughput 

and low latency. 

 Limited AI/ML inference benchmarks under HPC needs – Few works systematically evaluate 

inference tasks in serverless under HPC conditions, especially regarding cold starts, concurrency, 

and distributed execution. 

 Lack of multi-cloud performance and cost analysis – Comparative studies across AWS, Azure, and 

Google Cloud are scarce, particularly those integrating both performance metrics and long-term 

cost models like TCO. 

 

5. NOVELTY OF THE STUDY 

This work is the first study to systematically 

benchmark four representative AI/ML 

workloads on serverless, containerized or 

traditional VM-based environments in an HPC 

context. In contrast to previous research, 

which addresses either microservices or 

individual provider analysis, the present study 

offers a cross-architecture analysis adjusted to 

the computational and latency-conscious 
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needs of the AI/ML pipelines. Moreover, the 

study transcends the sphere of raw 

performance benchmarking by integrating 

both empirical data and in-depth architectural 

analysis and cost modeling framework. This 

combined method not only emphasises the 

efficiency in running and utilising resources 

but also considers the long-term economic 

consequences based on the total cost of 

ownership (TCO). The study generates a 

comprehensive performance-cost analysis, 

which provides realistic recommendations in 

the implementation of workload-intensive 

deployment strategies in contemporary HPC-

intensive AI applications. 

 

6. THEORETICAL FRAMEWORK 

The present work relies on the concepts of 

performance engineering and cloud economics 

as these concepts provide a framework that 

makes it possible to analyze classical and 

serverless cloud systems. Not only does 

performance engineering specify serverless 

and classical systems, but also considers the 

efficiency parameters of the complete system, 

by applying metrics such as latency, 

throughput, scalability, resource-utilization 

etc. These features constitute an objective 

background against which we can decide 

whether a serverless computing environment 

is suitable to perform AI/ML compute-

intensive activities. The present study relies on 

the utility computing theory according to 

which computing resources are used as on-

demand utility and billed on a usage basis on  

 

 

the economic level. The further specific linking 

to serverless computing is that the 

performance of a workload is proposed to be 

associated with consumption-based billing in 

the finest-grained models of this 

theory.Besides, the framework is based on 

cloud-native concepts of scale, elasticity, and 

cost efficiency and is evaluated on a robust 

theoretical basis. Elasticity quantifies the 

degree to which platforms can dynamically 

scale to the effects of workloads, scalability 

quantifies the degree to which platforms can 

be scaled to increasing computational loads, 

and cost efficiency quantifies the degree to 

which some performance can be sacrificed in 

favor of cost and other factors. Overall, all 

these impressions demonstrate a potential to 

distinguish between serverless deployments as 

compared to container-based and virtual 

machine-based deployments of AI/ML 

workloads in HPC context. 

7. CONCEPTUAL FRAMEWORK 

The conceptual framework of this study is a 

systematic mapping of models of deployment, 

performance indicators to outcomes that 

emerge. The simplest form is that of 

relationship visualization: 

 

Figure 3:  Conceptual Framework 
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The real world workloads are complicated yet 

contain quite a number of variables. The types 

of workloads (image classification using 

CNNs, sentiment analysis using BERTs, time-

series forecasting using LSTMs, 

recommendation systems), the patterns of 

resource consumption (CPU-task, memory-

task, data transfers), and the patterns of costs 

(compute, storage, data transfer) are some of 

the variables that characterized the workloads. 

Other aspects of developer motivations, 

including portability, cloud-native service 

compatibility, and debuggability would be a 

part of the framework as well. When 

correlated, the paradigm would disclose an 

orderly path to examine which deployment 

model will be more appropriate in certain 

types of AI/ML workloads. Also important to 

note is that when there is an extremely 

latency-sensitive workload, then more 

traditional-style use of containers can be more 

helpful, and workloads that can run (parallel) 

in large multiples of workers will be able to 

leverage on the serverless-ness. Thus, the 

conceptual framework may provide a 

reference framework through which 

performance trade-offs and costs may be 

considered when utilizing HPC-oriented 

AI/ML workloads. 

 

8. RESEARCH METHODOLOGY 

This study adopts an empirical, experimental, 

and quantitative methodology, supplemented 

by qualitative evaluation of platform features. 

The research is designed in three distinct 

phases: 

 

10.1 Experimental Setup and Benchmarking: 

Image classification through CNNs, sentiment analysis in NLP through BERT, time-series forecasting 

and collaborative filtering recommendation systems through LSTMs are all served on serverless 

(AWS Lambda, Google Cloud Functions, Azure Functions), container-based deployments, and VM-

based deployments. Key performance indicators, such as the execution time and cold start latency, the 

throughput, the scalability and the resource utilization are measured using automated monitoring 

tools (AWS CloudWatch, Google Cloud Monitoring, Azure Monitor and Prometheus-based loggers). 

10.2 Cost Analysis: 

Provider pricing modeling data and actual billing outcomes, such as compute and storage charges 

and data transfer charges, are collected as cost data. The sum of direct cost (e.g, execution time, 

storage) and indirect cost (e.g, debugging and maintenance overheads) is summed up into an overall 

cost of ownership (TCO) model. That ensures a whole knowledge of the financial trade-offs between 

deployment models. 

10.3 Comparative Evaluation: 

The final step combines the performance and cost results with quality results of system logs, review 

of documentation and views of the developer. It will be possible to assess not only raw efficiency but 

also usability of the platform, limitations of scale, and integration problems. 

Experimental Procedure will consist of the performance of workloads, modeling synthetic 

traffic patterns (steady and bursty), and the simulation of such traffic operating in controlled 

https://irjeas.org/


186 
International Research Journal of Engineering & Applied Sciences  |  irjeas.org                                                                       Vol.13 Issue 4 | October-December  2025  
 

conditions and measured conditions. Scalability is also checked by gradual increment of concurrency 

to measure the stability of response time in addition to the platform elasticity. 

     

Figure 4: Serverless computing platform 

This design will support cross-platform and multi-dimensional benchmarking of serverless and 

traditional systems with empirical evidence on the comparative performance, scale and cost-

effectiveness of AI/ML workloads in HPC systems. 

 

9. RESEARCH DESIGN 

The idea of the experiment proposal is the 

comparative research design in accordance 

with which we can conduct a systematic study 

of the performance of the system and cost-

performance of systems based on serverless, 

container, and VM deployment with regard to 

AI/ML workloads on the high-performance 

cloud systems. To ensure that the experiments 

can be re-executed, we executed them in a 

controlled environment with the most popular 

cloud systems, and enforced standard 

configuration across all deployment models to 

control them. The controlled used also 

achieved performance measure points out by 

the rival of cold- start time, maximum capacity 

under concurrency, Latencies at different 

loads, and cost of operation. We induced and 

then sustained (by repeated experimentation) 

image classification, natural language 

processing, time series forecasting and 

prescription system workloads across multiple 

days and different loads to achieve time-

varying variability among cloud 

performances. 

The repetitions provided statistically averaged 

values, and also reduced the interference of 

temporary distortions such as network 

variation or background contention. The 

comparative topical approach so constituted, 

enabled the assurances which a research 

design of this character could assure that the 

difference in the performances were 

attributable to architectural factors rather than 

to other factors of the environment that the 

researchers could not manipulate in nature, 

and authorized and ratified in the process of 

determination of the results. 

 

POPULATION AND SAMPLE 

 Population: AI/ML tasks in production HPC environments. 
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 Sample: Four representative workloads—image classification (CNN), NLP (BERT), LSTM 

time series, recommendation system. 

 

10. SAMPLING TECHNIQUE 

The paper has used a purposive sampling 

method so that the chosen workloads of 

AI/ML can reflect a wide range of 

computational load and latency distribution in 

high-performance cloud systems. In contrast 

with random sampling, this technique is 

directed by the goal to determine 

performance-cost trade-offs among 

deployment models. 

The selected workloads reflect heterogeneity 

in resource utilization and execution 

behaviour (both lightweight and highly 

computational). To provide one example, 

CNN-based image classification is 

characterized by a latency-sensitive workload, 

the BERT-based sentiment analysis exhibits 

memory-intensive and cold-start issues [47, 

48], the LSTM based forecasting is 

characterized by sequential run-time 

variability, and collaborative filtering 

demonstrates state-dependent and I/O-

intensive work. 

 

 By purposively selecting this diverse benchmark suite, the sampling ensures that the 

evaluation framework accounts for: 

 Workload Complexity Variation – from lightweight, event-driven inference to heavy, 

memory- and CPU-bound operations. 

 Latency Sensitivity – covering tasks where real-time responsiveness is critical, as well as 

batch-oriented processes. 

 Resource Utilization Patterns – including CPU-bound, memory-bound, and I/O-dependent 

workloads. 

 Generalizability to HPC AI/ML Environments – ensuring findings are applicable across a 

wide range of real-world deployment scenarios. 

This method allows ensuring that 

experimental assessment is not skewed toward 

a particular kind of workload, but rather it will 

be an exploration of the multi-dimensional 

nature of the challenges of deploying AI/ML 

applications in a serverless, containerized and 

VM-based low cost cloud. 

 

VARIABLES 

 Independent Variable: Deployment model (Serverless, Container, VM). 

 Dependent Variables: Latency, throughput, cold-start time, cost, CPU utilization. 

TOOLS AND TECHNOLOGIES USED 

 AI frameworks: TensorFlow, PyTorch, Hugging Face Transformers. 
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 Cloud services: AWS Lambda [49],  Azure Functions [50],  GCP Functions [51];  Docker, 

Kubernetes; EC2, Compute Engine, Azure VMs. 

 Monitoring tools: CloudWatch, GCP Operations, Prometheus, custom scripts. 

 

11. DATA COLLECTION 

In the context of this research, technical and 

economic factors of serverless and 

conventional cloud architectures are properly 

quantified in relation to the multi-source data 

collection process. They employed four 

complementary sources of data: 

a) Performance Metrics 

Performance latencies of data, throughput, concurrency behaviors and cold start latencies were 

accessed with performance metrics. The largely automated benchmarking utilities, alongside 

monitoring offerings (AWS CloudWatch, Google Cloud Monitoring, Azure Monitor and Prometheus 

loggers) represented response time, execution time and concurrency performance against differences 

in workload and deployment model. This also gave confirmation of good, reproducible and real-time 

system behaviors. 

b) Cost Data 

The costs were based on the observation of the cloud provider billing models and the real 

experimental usage bill, respectively. To make cost estimates more robust, the provider billing APIs 

probed and bills may be stripped to actively monitor costs as a function of compute time, memory 

use, storage and data transfers. This multi-dimensional viewpoint of cost efficiency and workloads 

was attained by the combination of ordinary billing design, and experimental billing. 

c) System Logs 

To provide a bit of context to the approach to execution, the AWS CloudTrail implementation logs, 

the Azure monitor implementation logs, and the GCP Cloud implementation logs were tabulated. 

There would be auto scaling delay, invocation failure, memory compromises, potential bottlenecks, 

throttling based on the logs during the invocation and various loads. These were a snap preview of 

how various platforms performed and responded to pressures and demonstrated elasticity and 

concurrency. 

d) Platform Documentation 

Qualitative data about runtime, environment configuration, access to GPUs or TPUs, and concurrency 

were examined in detail by reviewing provider documentation, developer tutorials and whitepapers 

to accumulate qualitative data on each of those limitations. This secondary data provided useful 

background to the analysis of the findings of the experiment carried out and implied platform-related 

constraints which affect the implementation of workloads. 

The combination of all these different sources of information is the foundation of the entire 

performance and cost analysis. The study, therefore, provides the technical integrity and practical 

relevance of study findings by undertaking the synthesis of empirical programmatic measures and 

APIs in billing and log analysis and documentation, analysis. 

DATA ANALYSIS 
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 Average latency and throughput across 10K+ invocations per workload. 

 TCO calculated using cost modeling over 1 year. 

 Graphical visualization using bar charts, line graphs. 

 Statistical tests for significance. 

ETHICAL CONSIDERATIONS 

 Use of open-source AI models and synthetic data for testing. 

 Avoids any data privacy or security concerns. 

 Experiments aligned with fair use of cloud credits/resources. 

LIMITATIONS OF THE STUDY 

 Inability to test serverless with GPU: 

Existing mainstream serverless systems do not support native GPUs/TPUs but can run any 

experiment using just the CPU. Consequently, the paper fails to provide the performance possible 

with serverless when accelerating deep learning models which have a high reliance on parallelized 

computation on GPUs. 

 Focus on inference, not training workloads: 

The evaluation is limited to inference tasks, which is generally beyond the execution performance and 

the available memory of serverless computers. Although it gives a realistic perspective on how 

serverless can be used today, it does not include information on end-to-end deployment of ML 

pipelines. 

 Dependence on provider updates and pricing models: 

Cloud platforms are dynamic and often pricing scheme, implementation capacity, and optimization 

characteristics vary. Hence, the outcomes reflect a point-in-time picture, and updates into time may 

cause performance or cost outcomes to be different than those herein described. 

DELIMITATIONS OF THE STUDY 

 Focused only on publicly available cloud platforms: 

The study is limited to the services of the commercial cloud providers (e.g., AWS, Google Cloud, and 

Microsoft Azure). Proprietary experimental platforms or private research clouds were not used to 

guarantee its replicability and applicability to commonly deployed infrastructures. 

 Exclusion of on-prem and hybrid edge-serverless deployments: 

This study does not compare serverless solutions built with on-premises systems or edge-cloud 

(hybrid) deployments. This organisational limit was established to make comparisons across vendors, 

but it constrains understanding of edge computing cases.. 

 Maximum concurrent users tested: 1000: 

Stress tests were capped at 1,000 concurrent invocations to balance experimental feasibility and cost. 

Although this is enough to evaluate trends in scalability, this upper limit can be insufficient to model 

any extreme-scale workload that may occur in a hyperscale production environment. 
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12. SCOPE OF THE STUDY 

The scope of this study lies in providing 

practical insights for organizations aiming to 

deploy scalable AI solutions on cloud 

platforms, particularly where balancing 

performance and cost is critical. The results 

can be directly applied to a real-time decision-

making framework (fraud detection, 

recommendation engines serving individuals, 

and other latency-critical applications) that 

requires both a responsive and a scaleable 

system. Also, cloud architectures can use the 

study as a quality resource to inform decisions 

related to selecting serverless deployments, 

containers, and VM deployments when 

dealing with an AI/ML workload in a high-

performance computing infrastructure. 

13. RESULTS 

The performance analysis showed that 

serverless computing was always faster than 

container- and VM-based deployments on 

most AI/MLs. Serverless was the fastest NLP 

in the workload, at 84 ms, whereas containers 

had a latency of 106 ms, and VMs had 137 ms. 

These trends were equally true in image 

classification and recommendation systems as 

serverless always reduced the response time. 

Such trends are summarized in Table 1 and 

demonstrated by Figure 5, which support the 

claim that serverless platforms are at least 

capable of delivering immediate 

responsiveness as per lightweight inference 

applications.

 

 

Table 1: Average latency (ms) by workload and deployment type 

Workload Serverless Container VM 

Image Classification 121 151 181 

NLP (Sentiment Analysis) 84 106 137 

Time Series Forecasting 154 178 206 

Recommendation System 102 137 165 
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 Figure 5: Latency Comparison  

 

Throughput analysis also brought to light the 

scaling benefit of serverless architectures. 

Serverless scaled well to 1000 requests per 

second under 150 users with increasing 

concurrency, which is 3.8 times the 

performance of containers (900 req/sec) or 

VMs (800 req/sec). This makes serverless 

platforms scale almost linearly to bursty 

workloads as illustrated in Table 2 and Figure 

6.

 

 

 

Table 2: Throughput deployment model at different levels of concurrent users 

Concurrent Users Serverless Container VM 

0 0 0 0 

50 850 700 500 

100 900 800 600 

150 1000 900 800 
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Figure 6: Throughput Comparison 

A limitation, however, was that cold-start 

latency was observed and had an average of 

about 300 ms. Though this effect was simply 

countered by concurrency by reusing the 

execution environment, it still caused a 

significant effect on latency-sensitive 

applications. 

  

 Table 3: Year TCO for Recommendation System Workload 

Cost Component Serverless Container VM 

Cloud Services $15,000 $19,000 $25,000 

Development $9,000 $11,000 $13,000 

Operations $4,000 $6,000 $9,000 

Total TCO $28,000 $36,000 $47,000 

 

 

 

Economically, the Total Cost of Ownership 

(TCO) analysis revealed that serverless was 

the most cost effective deployment model and 

was estimated to cost 28,000 in one year, as 

compared to 36,000 in one year of containers 

and 47,000 in one year of VMs. As depicted in 

Table 3 and Figure 7, operations and 

infrastructural savings of serverless 

deployments, although there were slightly 

more costs incurred in the development of 

serverless deployments during the adoption. 
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14. DISCUSSION 

The experimental results support the idea, that 

serverless applications suit event-based, short-

lasting AI tasks in particular, with dynamic 

scaling and low-latency being the key features. 

As an example, the rapid response time and 

adaptive scaling of serverless deployments 

helped NLP and recommendation system 

workloads. 

 

Container-based deployments, in turn, had 

similar performance and lower latency than 

VMs, but demanded more overhead of 

DevOps management and orchestration. Their 

use is constrained by inherent higher levels of 

operational complexity in organizations that 

want lightweight operational strategies. 

 

 

Table 4: Scalability Comparison 

Concurrent Users Serverless Container VM 

0 0 ms 0 ms 0 ms 

500 30 ms 50 ms 270 ms 

1000 50 ms 230 ms 500 ms 
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Figure 8: Graph of scalability comparison 

VMs may have been able to offer raw 

computing power just, but they never scaled to 

bursty workloads. In Table 4 and Figure 8, 

deployments of VM applications degraded 

considerably with high concurrency up to 500 

ms at 1000 users. It means that VMs are more 

appropriate when workloads assume 

predictable and long execution schedules, but 

not very dynamic AI inference tasks. 

 

15. INTERPRETATION OF RESULTS 

A more nuanced way of interpreting the 

results is that serverless frameworks perform 

best in terms of latency and cost-efficiency 

when used to operate stateless and lightweight 

inferences, e.g. NLP sentiment analysis. 

Serverless can compete effectively with real-

time AI services in production settings by 

offering scalability to almost any system 

within minutes without relying on 

infrastructure. Nonetheless, the existence of 

cold-start delays highlights the relevance of 

workload profiling and tuning (e.g. 

concurrency management, container reuse 

policies) to reduce the latency penalty in 

latency-sensitive applications. 

 

Table 5: Average Resource Utilization for NLP Workload 

Deployment Type CPU Utilization (%) Memory Utilization (%) 

Serverless 67 78 

Container 54 86 

VM 34 75 

 

Conversely, VM-based deployments, though 

not as efficient when dealing with bursty 

workloads, are still beneficial in stable, high-

volume, and long-run jobs. The predictability 

of performance due to the steady provision of 

resources, albeit with high cost, is important in 

cases where scale dynamics are not so 

important. There are some flexi-containers in 
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the middle ground, which provides some 

compromise in flexibility, control and 

moderate efficiency. Such equilibrium is 

observed in Table 5 and Figure 9, which have 

the highest memory usage (86) but average 

CPU performance than serverless (67% CPU). 

 

Figure 9: Average Resource Utilization for NLP Workload 

These findings once again support the idea that the deployment model should be proportional to the 

workload, and that it is not possible to view serverless as a universal solution, but as an optimised 

solution to certain categories of AI/ML applications. 

 

16. COMPARISON WITH PREVIOUS 

STUDIES 

The findings of this present paper are 

consistent with previous assessments of 

serverless computing on commercial offerings, 

including AWS Lambda and Azure Functions, 

in which lower latencies and greater scalability 

have been observed uniformly. But previous 

research tended to focus on either micro 

services or isolated workloads, unlike the 

current study which proposes a multi-

workload view consisting of image 

classification, NLP, time series forecasting and 

recommendations systems. This expanded 

assessment introduces additional details into 

the response of various deployment models to 

heterogeneous AI requirements. 

Furthermore, a cost analysis provides a 

support to that group of papers on serverless 

economics, with subject of efficiency savings 

in the form of temporally changing workloads. 

This can be extended to end-to-end TCO 

analysis, and with that, the present research 

will provide a combined perspective of the 

workload-based cost trade-offs of serverless, 

container, and VM deployment. In general, the 

results do not only substantiate the 

performance claims, but also introduce a new 

empirical context to decision-making 

concerning cloud-based AI/ML 

implementation plans. 

 

IMPLICATIONS FOR PRACTICE 

 Just a few operational configuration decisions can be used to apply AI inference and smart 

applications can be prototyped sooner and time-to-market can be reduced. 
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  Enterprise Architecture: This is a serverless-first requirement, with dynamic loads that vary 

unpredictably, in which the most important metrics are elasticity and cost-effectiveness. 

 There is provisioning/management of infrastructure that can help organizations invest their 

limited resources in optimal AI models and business logic and not server-side. 

  

IMPLICATIONS FOR POLICY 

 Serverless adoption can help institutions vastly reduce spending on the cloud, especially 

when their load scale is dynamic or seasonal. 

 The trend promotes the training of IT teams on serverless frameworks to make them 

proficient in handling contemporary cloud-native ecosystems. 

 It also signals procurement policies that resonate with pay-as-you-go finance models to limit 

lock-in to over-provisioned or under-utilized infrastructure. 

IMPLICATIONS FOR FUTURE RESEARCH 

 Future research in this area needs to build this analysis to cover AI model training 

benchmarks in which compute intensity and latency introduce new challenges to serverless. 

 Cold-start mitigation methods, including warm pool strategies and AI caching, should also be 

considered as a solution to the problem of latency in real-time applications created by 

researchers. 

 Another exciting future project is to consider serverless in federated learning and edge 

settings where decentralized and privacy-conscious AI has the benefit of lightweight 

implementation. 

 

17. SUMMARY OF FINDINGS 

The paper proves that AI inference can be 

applied effectively with the help of serverless 

computing in high-performance data analysis 

(HPC) in clouds. It always achieved a low-

latency, high-throughput, and cost-efficiency 

over containers and VMs especially on 

lightweight and stateless workloads, like NLP 

and recommendation systems. Pay-as-you-go 

serverless, coupled with its near-instant 

scalability characteristics, makes it an 

appealing choice to organizations that want to 

use AI services at scale without a big 

investment in infrastructure overhead. 

However, the findings also prove that such 

complex AI/ML tasks as deployment retain 

their relevance in traditional deployment 

models. The ones that need persistent state or 

the specialized dedicated graphics processing 

or the ones that take a long time to complete 

will still be better placed in containers or VMs. 

Such models offer more control and stability, 

but at a greater cost of operation. In this way, 

the results state that to identify the most 

suitable workload deployment model, 

serverless is the best approach to use when 

dealing with the dynamic inference role, 

whereas more prolific applications prefer the 

use of conventional architecture. 
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4. RECOMMENDATIONS 

 Prefer serverless for real-time, bursty workloads. 

It offers rapid scalability and minimal latency, making it suitable for dynamic AI inference. The pay-

per-use model further reduces idle infrastructure costs. 

 Use containers for semi-persistent, moderately complex tasks. 

They balance performance with flexibility, supporting workloads that need partial persistence. 

Containers also simplify deployment in microservices-based pipelines. 

 Opt for VMs when persistent infrastructure and manual control are needed. 

VMs ensure stable environments for long-running or GPU-intensive tasks. They remain useful where 

regulatory or legacy system requirements demand full control. 

 

18. CONCLUSION 

This research systematically evaluated 

serverless, container, and VM-based 

deployments for AI/ML workloads in high-

performance cloud environments, focusing on 

latency, throughput, scalability, and cost-

efficiency. The methodology involved 

benchmarking multiple workloads, including 

NLP, image classification, and 

recommendation systems, under varying 

concurrency levels to capture realistic 

performance behaviors. Results confirmed that 

serverless architectures provide compelling 

advantages, with the lowest latency of 84 ms 

in NLP inference compared to 106 ms for 

containers and 137 ms for VMs. Serverless also 

achieved the highest throughput of 1000 

requests/sec at 150 concurrent users, 

outperforming containers (900 req/sec) and 

VMs (800 req/sec). In terms of economic 

efficiency, the one-year Total Cost of 

Ownership (TCO) was significantly lower for 

serverless ($28,000) compared to containers 

($36,000) and VMs ($47,000). Although a cold-

start latency of approximately 300 ms was 

observed, this drawback was largely mitigated 

under concurrent workloads, making it a 

manageable trade-off. Overall, serverless 

democratizes AI deployment by lowering 

operational costs and simplifying architecture, 

while traditional models remain valuable for 

GPU-intensive or long-running tasks that 

demand persistent infrastructure and manual 

control. 

 

19. FUTURE SCOPE 

This paper affirms the viability of serverless 

architecture as regards AI/ML inference in 

HPC environments; several prime areas of 

activity can be identified. One of them is the 

introduction of GPU support to serverless 

systems, which will allow them to be applied 

to computationally expensive tasks such as 

training deep learning models and to large-

scale video detection. Besides it, the 

introduction of the real-time akin scaling plans 

could provide the opportunity to avoid the 

functionality and intuitively predict the 

tendency in the workload, by imminently 

forecasting the operation management cold-

start overheads. This would cause serverless 

application to be more suitable in truly low 

latency applications such as autonomous 

systems and trading finance. Besides the 

inference power, we can also consider a large 

sonnet of AI workloads such as video analysis 

when expanding the experiment as another 

method of learning to more about the 
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capability of serverless. This can also provide 

new opportunities to decentralized and 

privacy-conscious AI applications and can also 

transform this serverless into a multi-use and 

cost-effective computing infrastructure of 

normal living in 2020s. 
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