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Abstract: Traditional cloud deployment models such as containers and virtual
machines (VMs) have long supported AI/ML workloads in high-performance
computing (HPC), but they often suffer from inefficiencies including over-
provisioning, high operational costs, and limited scalability for bursty or real-time
tasks. To address these limitations, this study conducts an empirical benchmarking of
serverless architectures against traditional models across leading cloud providers,
with a focus on evaluating latency, throughput, scalability, and cost-efficiency. Four
representative AI/ML workloads—image classification, natural language processing
(NLP), time series forecasting, and recommendation systems—were deployed under
varying concurrency levels to capture realistic performance dynamics. Results show
that serverless significantly outperforms containers and VMs in specific contexts,
achieving the lowest latency of 84 ms for NLP workloads, the highest throughput of
1000 requests/sec at 150 concurrent users, and the most cost-effective profile with a
one-year Total Cost of Ownership (TCO) of $28,000, compared to $36,000 for
containers and $47,000 for VMs. While cold-start delays of approximately 300 ms
remain a trade-off, their impact is manageable for most inference tasks. By
systematically quantifying these performance and economic advantages, the study
contributes to the growing body of knowledge on scalable AI infrastructure,
positioning serverless as a practical and democratizing approach for Al-driven HPC
applications.
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1. INTRODUCTION

The growing use of Artificial Intelligence (AI)
and Machine Learning (ML) across various
fields,

autonomous systems, and scientific discovery

including healthcare, finance,
has largely increased pressure on scalable,

efficient, and cost-effective sources of
computation [1, 2]. They are highly data-
intensive  and  computationally-intensive
applications, which need to process large
amounts of data extremely quickly and re-
train models with millions or even billions of
parameters. As the AI/ML workload increases
in terms of scale (size) and complexity the
organizations are addressing the architectures
high

throughput, and dependable well without

capable of delivering elasticity,
being prohibitively expensive [3]. Based on
infrastructures of virtual machines (VMs) and
clusters, the establishment of the infrastructure
of scientific and industrial computing has long
been carried out using widely used traditional
models of high-performance computing (HPC)
[4]. However, the paradigm shift to cloud-
the

computing

native ecosystems and creation of

paradigms of serverless are
restructuring the way AI/ML workloads can be
implemented, run, and scaled in present-day
settings [5]. Although proven in their abilities,
VM-based HPC solutions have significant
limitations in their deployment to modern
AI/ML  workloads [6]. Virtual

can demand

cluster
provisioning significant
configuration, lengthy launch time, and fixed
resource assignment, and thus lacks the
dynamism

required  of  dynamically

provisioned ML pipelines [7]. What is more,

VM-based architectures are linked to increased

operation overheads and resource
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underutilization, since users often over-
provision compute resources in an attempt to
circumvent performance bottlenecks [8]. This
inefficiency is especially expensive when
workloads display irregular demand cycles, as
is  the data

tuning, or

case in preprocessing,

hyperparameter inference.
Moreover, scaling VMs to peak workloads can
lead to high expenses that can be costly to
organizations with a tight budget, hence
traditional approaches to HPC would be more
appealing to such organizations [9]. In this
way, the VM-based HPC is still irreplaceable
by other tools in some scientific simulations
and closely integrated parallel computations,
but it is not necessarily the best choice in the
context of AI/ML applications in the age of
clouds [10]. Serverless computing has been
adopted to overcome most of these restrictions
to have the next-generation of application
execution models with event-sensitive, on-
demand execution framework with code logic
developers being able to concentrate on pure
code instead of infrastructure management
[11]. The

architectures

cloud provider in serverless

dynamically provides
computational resources [12], such that its
users incur only the upfront executable time of
their workloads. Such a model is intrinsically
cost-effective, elasticc and easy to deploy,
making it especially attractive to AI/ML
pipelines that need burstable performance and
fine-scale capability [13]. As an example,
serverless functions may facilitate numerical
operations, multitask model training on mini-
batches, or scale up inference services on
[14]. Further, the

management abstraction

demand in real-time
infrastructure
facilitates operational simplicity and allows

researchers and developers to speed up
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experimentation and innovation without
worrying about cluster configuration and
maintenance. As a result, it is increasingly

claimed that serverless computing is a viable

Serverless
Architecture

apps).

Traditional

Cloud
Architecture

workloads.

alternative to (or compliments) the rather
conventional AI/ML workloads VM-based

HPC environment [15].

*No server management, provider handles everything.
*Event-driven, auto-scales instantly.

*Pay only per execution (request/time used).

*Cold start delays possible.

*Limited customization/control.

*Best for short, stateless tasks (APIs, IoT, real-time

*High availability by default, but vendor lock-in risk.

*User manages servers, OS, and runtime.

* Applications run continuously.

*Pay for provisioned resources, even if idle.
*No cold-start issue.

*Full customization and control.

*Suitable for long-running, stateful, or heavy

* Portability across platforms (VMs, containers).

Figure 1: Difference among traditional and serverless cloud architecture.

the

popularity of serverless systems, there are still

Nevertheless, even with increasing
some major shortcomings in evaluating and
to traditional HPC

systems [16], in particular, AI/ML workloads.

comparing serverless

The literature is often focused on general or
limited groups of computational workloads,
that are not very informative about the real-
world performance, scalability [17], or the
dynamic cost characteristics of such
architectures used to run end-to-end ML
[18].  Additionally,

assignment has limits and overheads in

pipelines resource
function orchestration, and cold start latency

make serverless execution environments
heterogeneous, and require to be empirically
studied. Without

frameworks, organizations struggle to make

stringent comparative

informed decisions regarding when and how
to use serverless models so as to benefit
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specifically, those computationally-intensive
AI/ML models that must satisfy accuracy,
latency, and budgetary constraints [19]. The
present work is dedicated to the overall
comparison of the serverless and regular VM-
based cloud-based both in
performance and proportionality, with the
workloads of AI/ML within the HPC setting.
This study also strive to present hard facts on

solutions,

what each of the models is capable of best
accomplishing, and what the models restrict
by critically examining the execution-time,
scalability, throughput and financial aspects of
the exemplary AI/ML tasks. This type of
evaluation not only bridges the current gap in
benchmarking works, but also provides a
choice model to  scientists, clinical
practitioners, and institutions to enhance their
AI/ML pipelines using the current HPC-

provided cloud environments and services.
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And finally by the study one may gain a better
with
generation computational paradigm, it is

understanding of how, the next-

2. BACKGROUND

The
infrastructures has additionally been defined

development  of  computational
through a slow shift between on-premise,

monolithic  high-performance  computing
(HPC) operations to accommodating models
that are cloud-native and capable of fulfilling
the continuously changing demands of the
modern workload [20]. There were only
rewarded by classic HPC sets, that were
thought to be on-prem, tied together with
inexpensive density of salary closely processed
investors, dedicated interconnection and
dedicated job programs, are pricey to deploy,
and were scarcely scalable [21]. The structures
of these collections not only involved costly
investments of capital in the form of physical
mediation, and administrative specialization,
but can also impose restraints upon the
amount of degrees of freedom, and hence
could not so readily adapt flexibly to the
unpredictable and often heterogeneous loads
modern  information-intensive
[22]. Also

organizations have slowly been transitioning

of more

applications cloud computing
out of a staid hardware based world to

virtualized cloud-native architectures to
experience the principle of efficiency, elasticity,
wilful resource pooling and pay-as-you-go to

allow more access to traditionally exclusive

resources with high performance
characteristics [23]. This led to pre-
dispositioning the exploration of other

infrastructure management models such as
containerization and serverless execution that
enable abstract control of the infrastructure,

and increased portability.

As far as serverless computing is concerned it

is a concept shift as the developer can not only
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possible to offset the growing demands of
AI/ML that will eventually lead to smarter,
larger and cheaper cloud-based HPC services.

have management of his servers but also get a
choice of building his own clusters. The cloud
providers, however, can dynamically operate
each execution environment, and they can
only provide compute resources to
functions or tasks [24]. This 100% managed

run

event-based model simplifies scale operations,
is less expensive, and also allows scaling to
very fine-grain, especially which is appealing
to irregularly or bursty workload applications
[25]. The unending access to containers and
virtual machine (VMs) within the cloud setup
permits users uniformly programmable
thus,

mechanisms that have software dependencies

environments permitting  robust

and system configurability.  Specifically,
containers are now highly used environment
runtimes due to their lightweight deployment,
the simplicity of portability between platforms
and VMs can provide a greater level of
isolation and even support legacy applications
[26]. Companies are providing complements
to each other; and cloud-native ecosystems are
being used to offer trade-offs in improved
Both  AI/ML

workloads have computational intensity of

flexibility-control-efficiency.

model training as a key factor in comparison
to low latency-inference requirement. Massive
parallelism and acceleration using GPUs is
frequently needed during training and the
workloads of inference are more latency-
sensitive, as it will respond promptly (and
scale gracefully) with any user load increment
or reduction [27]. These demands mark the
conflict between the established HPC design
that is good at high sustained throughput and
has low agility, and the new serverless design
that is agile and lacks the cold start, memory
constraints, and orchestration overhead [28].

Vol.13 Issue 4 | October-December 2025


https://irjeas.org/

Figure 2: Significance of AI/ML in HPC

Some earlier work on the deployment of
cloud-based Al was focused on containerized
and VM-based solutions, which have proven
to be practical to execute large-scale training
and inference. Nevertheless, there are still few
between  these

systematic ~ comparisons

traditional = frameworks and  serverless

3. PROBLEM STATEMENT

Traditional cloud architectures, that typically

use virtual machines and containerized
clusters are manual to provision, are taxing to
scale, and need significant operational scale,
and thus are likely to cause inefficiency when
on-demand AI/ML  workloads.

Although these models provide scalable

serving

sustained large-scale computation, they are

poorly suited to the situation where

computational load is
infrequent/unpredictable and dependent on an
event (where it is wasteful to overprovision
the resources and thus is more costly). In the
meantime, serverless computing presents a
alternative  in

compelling computing,
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the
performance-cost trade-offs of real-life AI/ML

platforms, especially in frames of
pipelines [29]. The existence of this gap
highlights the necessity of further analysis of
serverless computing in HPC contexts to guide
architectural decisions in future Al-based

applications.

providing the benefits of auto-scaling, less

control over infrastructure, and more
straightforward pay per use pricing, but the
implications for compute-intensive AI/ML
applications remain to be seen because
serverless computing brings with it latency
costs due to cold starts, execution time

restrictions, and resource restrictions.
Although the performance, scalability, and
cost-effectiveness of serverless and traditional
deployment model in HPC contexts has
become core area of concern, there has not
been a formal and incisive investigation into
the relative advantage of both types of
platform. The intent in this section is to
highlight  the focused

urgency for a
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investigation to assess the effectiveness of implementing AI/ML workloads that have
serverless architecture as a viable, cost- typically been carried out in VM-based HPC
effective and scalable alternative for contexts.

1. Objectives of the Study
e Benchmark latency and throughput of AI/ML workloads on serverless, containers, and VMs.
¢ Evaluate Total Cost of Ownership (TCO) over a 1-year period.
e Assess CPU utilization and resource efficiency.
e Derive recommendations for workload-specific cloud deployment strategies.
2. Research Questions
e Does serverless provide comparable or better performance than containers and VMs?
e Is serverless more cost-effective for Al inference workloads?
e How does cold-start impact serverless performance in high-demand HPC scenarios?
3. Hypotheses
e Serverless deployments have lower latency in bursty Al tasks.
e TCO for serverless is lower than containers and VMs in most inference scenarios.

e Cold starts and lack of GPU support may hinder serverless performance for some tasks.

4. REVIEW OF LITERATURE

The discussion of the literature on cloud-based applications displaying advantages in bursty
Al architecture shows that VM-based and and event-driven workloads, therefore
container-based models evolve into serverless supporting the relevance of serverless to
frameworks. Initial studies like Adzic et al. AI/ML inference. A case in point was the
(2017) [30] and McGrath et al. (2017) [31] empirical comparison of AWS, Azure, and
demonstrated the cost reduction and Google Cloud Functions by Wang et al (2018)
throughput benefits of AWS Lambda and [36] that uncovered contention issues, cold
Azure Functions in contrast with traditional starts, and even bugs not mentioned in the
VM deployments, establishing serverless as a documentation and that demonstrated the
disruptive technology in cloud programming. trade-offs of operation between providers.

However, Baldini et al. (2017) [32] and
Hellerstein et al. (2018) [33] claimed that

serverless platforms had critical bottlenecks,

The latter studies attempted to solve these
bottlenecks by  making  architectural
innovations and orchestration methods.
Wukong et al. (2020) [37] and Shahrad et al.
(2020) [38] with the help of Carver et al. (2020)

[37] and Azure workload characterization,

namely cold start latency and stateless
execution, which restricted their scaling to
large-scale Al workloads. Conversely, Jonas et
al. (2019) [34] and Eismann et al. (2020) [35]

respectively, showed how concurrency could
accentuated the democratization opportunities

be better managed and reduced latency by

provided by serverless with simplified scheduling tasks with locality awareness and

programming models and classified optimized scheduling. Correspondingly, Das et

182

International Research Journal of Engineering & Applied Sciences | irjeas.org Vol.13 Issue 4 | October-December 2025


https://irjeas.org/

al. (2024) [39] proposed Al-guided pre-
warming techniques to reduce cold-start,
whereas Ouakley et al. (2024) [40] proposed FSD-
Inference to eliminate serverless
communication bottlenecks in distributed ML
inference that achieve the HPC level of
performance. Meanwhile, Kubernetes-based
orchestration became integrated in a hybrid
approach, where Petrosyan et al. (2022) [41]
uses containers such as Docker and Singularity
to play with HPC workloads and Peri et al.
(2023) [42] introduces the concept of hybrid
cloud schedulers that balance between cost
serverless and

These  papers

demonstrate that although serverless is very

and deadlines between

container  technologies.
elastic and cost efficient, containers and VMs
are necessary to ensure control, predictability,

and high-resource operations.

Cost and TCO analyses have also been a
common theme in addition to performance
gains. Kumanov et al. (2018) [43] demonstrated
that

performance

serverless could provide massive

improvements in biomedical

research at a very low cost, whereas the article

RESEARCH GAP

by Muelle et al. (2020) [44] showed that
serverless analytics systems such as Lambada
could very  substantially  outperform
commercial offerings by a few times. On the
other hand, Copik et al. (2024) [45] highlighted
that near-native performance is commonly
demanded by HPC workloads, and resource
rFaaS

frameworks can fill the gap between low cost

disaggregation and RDMA-enabled

and high performance. More recently, Schmid
et al. (2025) [46] using SeBS-Flow provided
standardized cost and
the

providers, AWS, Azure, and Google Cloud, a

runtime diversity

benchmarks across 3 major cloud
large gap in comparative analysis. Taken
together, these contributions validate the idea
that serverless is particularly well-suited to
cost-sensitive, bursty AI/ML workloads, as
performance-intensive and long-running tasks
continue to be best served by containerized or
VM-based orchestration. The new agreement
suggests hybrid solutions have workload-
based deployment policies to balance latency,
throughput and TCO, thus benchmarking
activity becomes a key element in the future to

inform the adoption.

e Focus on microservices and web apps — Most serverless studies emphasize lightweight applications,

leaving limited insights into compute-heavy AI/ML workloads that demand high throughput

and low latency.

e Limited AI/ML inference benchmarks under HPC needs — Few works systematically evaluate

inference tasks in serverless under HPC conditions, especially regarding cold starts, concurrency,

and distributed execution.

e Lack of multi-cloud performance and cost analysis — Comparative studies across AWS, Azure, and

Google Cloud are scarce, particularly those integrating both performance metrics and long-term

cost models like TCO.

5. NOVELTY OF THE STUDY

This work is the first study to systematically
AI/ML

containerized or

benchmark  four representative
workloads on serverless,

traditional VM-based environments in an HPC
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context. In contrast to previous research,

which addresses either microservices or

individual provider analysis, the present study
offers a cross-architecture analysis adjusted to
the and

computational latency-conscious
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needs of the AI/ML pipelines. Moreover, the
study transcends the sphere of raw
performance benchmarking by integrating
both empirical data and in-depth architectural
analysis and cost modeling framework. This
combined method not only emphasises the
efficiency in running and utilising resources

but also considers the long-term economic

6. THEORETICAL FRAMEWORK

The present work relies on the concepts of
performance engineering and cloud economics
as these concepts provide a framework that
makes it possible to analyze classical and
serverless cloud systems. Not only does
performance engineering specify serverless
and classical systems, but also considers the
efficiency parameters of the complete system,
by applying metrics such as latency,
throughput, scalability, resource-utilization
etc. These features constitute an objective
background against which we can decide
whether a serverless computing environment
is suitable to perform AI/ML compute-
intensive activities. The present study relies on
the utility computing theory according to
which computing resources are used as on-

demand utility and billed on a usage basis on

7. CONCEPTUAL FRAMEWORK

The conceptual framework of this study is a
systematic mapping of models of deployment,

performance indicators to outcomes that

Deployment

Models

Performance
Metrices

« Serverless
+ Containers
= VMs

Outcomes

consequences based on the total cost of
ownership (TCO). The study generates a
comprehensive performance-cost analysis,
which provides realistic recommendations in
the implementation of workload-intensive
deployment strategies in contemporary HPC-
intensive Al applications.

the economic level. The further specific linking
to serverless computing is that the
performance of a workload is proposed to be
associated with consumption-based billing in
the  finest-grained models of  this
theory.Besides, the framework is based on
cloud-native concepts of scale, elasticity, and
cost efficiency and is evaluated on a robust
theoretical basis. Elasticity quantifies the
degree to which platforms can dynamically
scale to the effects of workloads, scalability
quantifies the degree to which platforms can
be scaled to increasing computational loads,
and cost efficiency quantifies the degree to
which some performance can be sacrificed in
favor of cost and other factors. Overall, all
these impressions demonstrate a potential to
distinguish between serverless deployments as
compared to container-based and virtual
machine-based  deployments of AI/ML

workloads in HPC context.

emerge. The simplest form is that of

relationship visualization:

= Latency
« Throughput
* Scalability
« Resource utilization

+ Cost Efficiency
+ Task Suitability
*Scalability in

HPC

Figure 3: Conceptual Framework
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The real world workloads are complicated yet
contain quite a number of variables. The types
of workloads (image classification using
CNNs, sentiment analysis using BERTS, time-
series forecasting using LSTMs,
recommendation systems), the patterns of
resource consumption (CPU-task, memory-
task, data transfers), and the patterns of costs
(compute, storage, data transfer) are some of
the variables that characterized the workloads.
Other aspects of developer motivations,
including portability, cloud-native service
compatibility, and debuggability would be a
part of the framework as well. When

correlated, the paradigm would disclose an

8. RESEARCH METHODOLOGY

orderly path to examine which deployment
model will be more appropriate in certain
types of AI/ML workloads. Also important to
note is that when there is an extremely
latency-sensitive =~ workload, then more
traditional-style use of containers can be more
helpful, and workloads that can run (parallel)
in large multiples of workers will be able to
leverage on the serverless-ness. Thus, the
conceptual framework may provide a
through  which

performance trade-offs and costs may be

reference framework

considered when utilizing HPC-oriented
AI/ML workloads.

by qualitative evaluation of platform features.

This study adopts an empirical, experimental, The research is designed in three distinct

and quantitative methodology, supplemented phases:

10.1 Experimental Setup and Benchmarking:

Image classification through CNNSs, sentiment analysis in NLP through BERT, time-series forecasting
and collaborative filtering recommendation systems through LSTMs are all served on serverless
(AWS Lambda, Google Cloud Functions, Azure Functions), container-based deployments, and VM-
based deployments. Key performance indicators, such as the execution time and cold start latency, the
throughput, the scalability and the resource utilization are measured using automated monitoring

tools (AWS CloudWatch, Google Cloud Monitoring, Azure Monitor and Prometheus-based loggers).
10.2 Cost Analysis:

Provider pricing modeling data and actual billing outcomes, such as compute and storage charges
and data transfer charges, are collected as cost data. The sum of direct cost (e.g, execution time,
storage) and indirect cost (e.g, debugging and maintenance overheads) is summed up into an overall
cost of ownership (TCO) model. That ensures a whole knowledge of the financial trade-offs between
deployment models.

10.3 Comparative Evaluation:

The final step combines the performance and cost results with quality results of system logs, review
of documentation and views of the developer. It will be possible to assess not only raw efficiency but

also usability of the platform, limitations of scale, and integration problems.

Experimental Procedure will consist of the performance of workloads, modeling synthetic
traffic patterns (steady and bursty), and the simulation of such traffic operating in controlled
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conditions and measured conditions. Scalability is also checked by gradual increment of concurrency

to measure the stability of response time in addition to the platform elasticity.

Serverless Computing
Platforms

Commercial Platforms

|
AWS
Lambda

Google

Cloud
Function

I
I | I

l Microsoft \ l \ l s \
Azure OpenFaas Fission

Opensource Frameworks

Apache

OpenWhisk

Figure 4: Serverless computing platform

This design will support cross-platform and multi-dimensional benchmarking of serverless and

traditional systems with empirical evidence on the comparative performance, scale and cost-

effectiveness of AI/ML workloads in HPC systems.

9. RESEARCH DESIGN

The idea of the experiment proposal is the
comparative research design in accordance
with which we can conduct a systematic study
of the performance of the system and cost-
performance of systems based on serverless,
container, and VM deployment with regard to
AI/ML workloads on the high-performance
cloud systems. To ensure that the experiments
can be re-executed, we executed them in a
controlled environment with the most popular
cloud systems, and enforced standard
configuration across all deployment models to
control them. The controlled used also
achieved performance measure points out by
the rival of cold- start time, maximum capacity
under concurrency, Latencies at different
loads, and cost of operation. We induced and

then sustained (by repeated experimentation)

POPULATION AND SAMPLE

image  classification, natural language

processing, time series forecasting and
prescription system workloads across multiple
days and different loads to achieve time-
varying

performances.

variability among cloud

The repetitions provided statistically averaged
values, and also reduced the interference of
temporary distortions such as network
variation or background contention. The
comparative topical approach so constituted,
enabled the assurances which a research
design of this character could assure that the
difference in the performances were
attributable to architectural factors rather than
to other factors of the environment that the
researchers could not manipulate in nature,
and authorized and ratified in the process of

determination of the results.

e Population: AI/ML tasks in production HPC environments.
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e Sample: Four representative workloads—image classification (CNN), NLP (BERT), LSTM

time series, recommendation system.

10. SAMPLING TECHNIQUE

The paper has used a purposive sampling
method so that the chosen workloads of
AI/ML can reflect a wide range of
computational load and latency distribution in
high-performance cloud systems. In contrast
with random sampling, this technique is
directed by the goal to determine
performance-cost trade-offs among

deployment models.

The selected workloads reflect heterogeneity
in resource utilization and execution
behaviour (both lightweight and highly

computational). To provide one example,
CNN-based image
characterized by a latency-sensitive workload,
the BERT-based sentiment analysis exhibits
memory-intensive and cold-start issues [47,
48], the LSTM Dbased forecasting is

sequential

classification is

characterized by run-time

variability, =~ and  collaborative filtering
demonstrates state-dependent and I/O-

intensive work.

e By purposively selecting this diverse benchmark suite, the sampling ensures that the

evaluation framework accounts for:

e  Workload Complexity Variation — from lightweight, event-driven inference to heavy,

memory- and CPU-bound operations.

e Latency Sensitivity — covering tasks where real-time responsiveness is critical, as well as

batch-oriented processes.

e Resource Utilization Patterns — including CPU-bound, memory-bound, and I/O-dependent

workloads.

¢  Generalizability to HPC AI/ML Environments — ensuring findings are applicable across a

wide range of real-world deployment scenarios.

This  method allows ensuring that
experimental assessment is not skewed toward
a particular kind of workload, but rather it will

be an exploration of the multi-dimensional

VARIABLES

nature of the challenges of deploying AI/ML
applications in a serverless, containerized and
VM-based low cost cloud.

e Independent Variable: Deployment model (Serverless, Container, VM).

e Dependent Variables: Latency, throughput, cold-start time, cost, CPU utilization.

TOOLS AND TECHNOLOGIES USED

e Al frameworks: TensorFlow, PyTorch, Hugging Face Transformers.

International Research Journal of Engineering & Applied Sciences | irjeas.org
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e Cloud services: AWS Lambda [49], Azure Functions [50], GCP Functions [51]; Docker,
Kubernetes; EC2, Compute Engine, Azure VMs.

¢  Monitoring tools: CloudWatch, GCP Operations, Prometheus, custom scripts.

11. DATA COLLECTION conventional cloud architectures are properly
In the context of this research. technical and quantified in relation to the multi-source data

cconomic  factors  of  serverless  and collection process. They employed four

complementary sources of data:
a) Performance Metrics

Performance latencies of data, throughput, concurrency behaviors and cold start latencies were
accessed with performance metrics. The largely automated benchmarking utilities, alongside
monitoring offerings (AWS CloudWatch, Google Cloud Monitoring, Azure Monitor and Prometheus
loggers) represented response time, execution time and concurrency performance against differences
in workload and deployment model. This also gave confirmation of good, reproducible and real-time

system behaviors.
b) Cost Data

The costs were based on the observation of the cloud provider billing models and the real
experimental usage bill, respectively. To make cost estimates more robust, the provider billing APIs
probed and bills may be stripped to actively monitor costs as a function of compute time, memory
use, storage and data transfers. This multi-dimensional viewpoint of cost efficiency and workloads

was attained by the combination of ordinary billing design, and experimental billing.
c¢) System Logs

To provide a bit of context to the approach to execution, the AWS CloudTrail implementation logs,
the Azure monitor implementation logs, and the GCP Cloud implementation logs were tabulated.
There would be auto scaling delay, invocation failure, memory compromises, potential bottlenecks,
throttling based on the logs during the invocation and various loads. These were a snap preview of
how various platforms performed and responded to pressures and demonstrated elasticity and

concurrency.

d) Platform Documentation

Qualitative data about runtime, environment configuration, access to GPUs or TPUs, and concurrency
were examined in detail by reviewing provider documentation, developer tutorials and whitepapers
to accumulate qualitative data on each of those limitations. This secondary data provided useful
background to the analysis of the findings of the experiment carried out and implied platform-related

constraints which affect the implementation of workloads.

The combination of all these different sources of information is the foundation of the entire
performance and cost analysis. The study, therefore, provides the technical integrity and practical
relevance of study findings by undertaking the synthesis of empirical programmatic measures and
APIs in billing and log analysis and documentation, analysis.

DATA ANALYSIS
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e Average latency and throughput across 10K+ invocations per workload.
e TCO calculated using cost modeling over 1 year.
e Graphical visualization using bar charts, line graphs.
e Statistical tests for significance.
ETHICAL CONSIDERATIONS
e Use of open-source Al models and synthetic data for testing.
e Avoids any data privacy or security concerns.
e Experiments aligned with fair use of cloud credits/resources.
LIMITATIONS OF THE STUDY
e Inability to test serverless with GPU:

Existing mainstream serverless systems do not support native GPUs/TPUs but can run any
experiment using just the CPU. Consequently, the paper fails to provide the performance possible
with serverless when accelerating deep learning models which have a high reliance on parallelized

computation on GPUs.
e  Focus on inference, not training workloads:

The evaluation is limited to inference tasks, which is generally beyond the execution performance and
the available memory of serverless computers. Although it gives a realistic perspective on how
serverless can be used today, it does not include information on end-to-end deployment of ML

pipelines.
e Dependence on provider updates and pricing models:

Cloud platforms are dynamic and often pricing scheme, implementation capacity, and optimization
characteristics vary. Hence, the outcomes reflect a point-in-time picture, and updates into time may

cause performance or cost outcomes to be different than those herein described.
DELIMITATIONS OF THE STUDY
¢  Focused only on publicly available cloud platforms:

The study is limited to the services of the commercial cloud providers (e.g., AWS, Google Cloud, and
Microsoft Azure). Proprietary experimental platforms or private research clouds were not used to

guarantee its replicability and applicability to commonly deployed infrastructures.
e  Exclusion of on-prem and hybrid edge-serverless deployments:

This study does not compare serverless solutions built with on-premises systems or edge-cloud
(hybrid) deployments. This organisational limit was established to make comparisons across vendors,

but it constrains understanding of edge computing cases..
e  Maximum concurrent users tested: 1000:

Stress tests were capped at 1,000 concurrent invocations to balance experimental feasibility and cost.
Although this is enough to evaluate trends in scalability, this upper limit can be insufficient to model

any extreme-scale workload that may occur in a hyperscale production environment.
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12. SCOPE OF THE STUDY

The scope of this study lies in providing
practical insights for organizations aiming to
deploy scalable AI solutions on cloud
platforms, particularly where balancing
performance and cost is critical. The results
can be directly applied to a real-time decision-
detection,

making  framework  (fraud

13. RESULTS

The performance analysis showed that
serverless computing was always faster than
container- and VM-based deployments on
most AI/MLs. Serverless was the fastest NLP
in the workload, at 84 ms, whereas containers
had a latency of 106 ms, and VMs had 137 ms.

These trends were equally true in image

recommendation engines serving individuals,
and other latency-critical applications) that
requires both a responsive and a scaleable
system. Also, cloud architectures can use the
study as a quality resource to inform decisions
related to selecting serverless deployments,
containers, and VM deployments when
dealing with an AI/ML workload in a high-

performance computing infrastructure.

classification and recommendation systems as
serverless always reduced the response time.
Such trends are summarized in Table 1 and
demonstrated by Figure 5, which support the
claim that serverless platforms are at least
capable of delivering immediate
responsiveness as per lightweight inference

applications.

Table 1: Average latency (ms) by workload and deployment type

Workload Serverless | Container | VM

Image Classification 121 151 181
NLP (Sentiment Analysis) 84 106 137
Time Series Forecasting 154 178 206
Recommendation System 102 137 165
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Recommendation
System

Throughput analysis also brought to light the
scaling benefit of serverless architectures.
Serverless scaled well to 1000 requests per

second under 150 users with increasing

performance of containers (900 req/sec) or
VMs (800 reqg/sec). This makes serverless
platforms scale almost linearly to bursty
workloads as illustrated in Table 2 and Figure

concurrency, which is 3.8 times

the 6.

Table 2: Throughput deployment model at different levels of concurrent users

International Research Journal of Engineering & Applied Sciences | irjeas.org

Concurrent Users | Serverless | Container | VM
0 0 0 0
50 850 700 500
100 900 800 600
150 1000 900 800
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Figure 6: Throughput Comparison

A limitation, however, was that cold-start
latency was observed and had an average of
about 300 ms. Though this effect was simply

countered by concurrency by reusing the

execution environment, it still caused a

significant  effect on  latency-sensitive

applications.

Table 3: Year TCO for Recommendation System Workload

Cost Component | Serverless | Container | VM
Cloud Services $15,000 $19,000 | $25,000
Development $9,000 $11,000 | $13,000
Operations $4,000 $6,000 $9,000
Total TCO $28,000 $36,000 | $47,000

Economically, the Total Cost of Ownership
(TCO) analysis revealed that serverless was
the most cost effective deployment model and
was estimated to cost 28,000 in one year, as
compared to 36,000 in one year of containers
and 47,000 in one year of VMs. As depicted in

192
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Table 3 and Figure 7, and

infrastructural

operations

savings  of  serverless
deployments, although there were slightly
more costs incurred in the development of

serverless deployments during the adoption.
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14. DISCUSSION

The experimental results support the idea, that
serverless applications suit event-based, short-
lasting Al tasks in particular, with dynamic
scaling and low-latency being the key features.
As an example, the rapid response time and
adaptive scaling of serverless deployments
helped NLP and recommendation system
workloads.

Container-based deployments, in turn, had
similar performance and lower latency than
VMs, but demanded more overhead of
DevOps management and orchestration. Their
use is constrained by inherent higher levels of
operational complexity in organizations that

want lightweight operational strategies.

Table 4: Scalability Comparison

Concurrent Users | Serverless | Container | VM

0 0 ms 0Oms
500 50 ms 270 ms
1000 50 ms 230 ms 500 ms
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Figure 8: Graph of scalability comparison

VMs may have been able to offer raw
computing power just, but they never scaled to
bursty workloads. In Table 4 and Figure 8§,
deployments of VM applications degraded
considerably with high concurrency up to 500

15. INTERPRETATION OF RESULTS

A more nuanced way of interpreting the
results is that serverless frameworks perform
best in terms of latency and cost-efficiency
when used to operate stateless and lightweight
e.g. NLP

Serverless can compete effectively with real-

inferences, sentiment analysis.

time Al services in production settings by

ms at 1000 users. It means that VMs are more

appropriate =~ when  workloads  assume
predictable and long execution schedules, but

not very dynamic Al inference tasks.

offering scalability to almost any system

within  minutes  without relying on
infrastructure. Nonetheless, the existence of
cold-start delays highlights the relevance of
(e.g.

container reuse

workload  profiling and tuning
concurrency management,
policies) to reduce the latency penalty in

latency-sensitive applications.

Table 5: Average Resource Utilization for NLP Workload

Deployment Type CPU Utilization (%) Memory Utilization (%)
Serverless 67 78
Container 54 86
VM 34 75

Conversely, VM-based deployments, though
not as efficient when dealing with bursty
workloads, are still beneficial in stable, high-
volume, and long-run jobs. The predictability
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of performance due to the steady provision of
resources, albeit with high cost, is important in
cases where scale dynamics are not so

important. There are some flexi-containers in
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the middle ground, which provides some
compromise in flexibility, control and
moderate efficiency. Such equilibrium is

observed in Table 5 and Figure 9, which have
the highest memory usage (86) but average
CPU performance than serverless (67% CPU).

u CPU Utilization (%)

80

u Memory Utilization (%) —

70 1

=
3

30 1

Values

30

20 A

Serverless

Deployment Type

Container VM

=

Figure 9: Average Resource Utilization for NLP Workload

These findings once again support the idea that the deployment model should be proportional to the

workload, and that it is not possible to view serverless as a universal solution, but as an optimised

solution to certain categories of AI/ML applications.

16. COMPARISON WITH PREVIOUS
STUDIES

The findings of this present paper are
consistent with previous assessments of
serverless computing on commercial offerings,
including AWS Lambda and Azure Functions,
in which lower latencies and greater scalability
have been observed uniformly. But previous
research tended to focus on either micro
services or isolated workloads, unlike the
current study which proposes a multi-
workload view consisting of image
classification, NLP, time series forecasting and
recommendations systems. This expanded

assessment introduces additional details into

IMPLICATIONS FOR PRACTICE

the response of various deployment models to

heterogeneous Al requirements.

Furthermore, a cost analysis provides a
support to that group of papers on serverless
economics, with subject of efficiency savings
in the form of temporally changing workloads.
This can be extended to end-to-end TCO
analysis, and with that, the present research
will provide a combined perspective of the
workload-based cost trade-offs of serverless,
container, and VM deployment. In general, the
results do mnot only substantiate the
performance claims, but also introduce a new
empirical  context to  decision-making
cloud-based AI/ML

implementation plans.

concerning

e Just a few operational configuration decisions can be used to apply Al inference and smart

applications can be prototyped sooner and time-to-market can be reduced.
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Enterprise Architecture: This is a serverless-first requirement, with dynamic loads that vary
unpredictably, in which the most important metrics are elasticity and cost-effectiveness.

There is provisioning/management of infrastructure that can help organizations invest their

limited resources in optimal AI models and business logic and not server-side.

IMPLICATIONS FOR POLICY

Serverless adoption can help institutions vastly reduce spending on the cloud, especially

when their load scale is dynamic or seasonal.

The trend promotes the training of IT teams on serverless frameworks to make them

proficient in handling contemporary cloud-native ecosystems.

It also signals procurement policies that resonate with pay-as-you-go finance models to limit

lock-in to over-provisioned or under-utilized infrastructure.

IMPLICATIONS FOR FUTURE RESEARCH

Future research in this area needs to build this analysis to cover Al model training

benchmarks in which compute intensity and latency introduce new challenges to serverless.

Cold-start mitigation methods, including warm pool strategies and Al caching, should also be
considered as a solution to the problem of latency in real-time applications created by

researchers.

Another exciting future project is to consider serverless in federated learning and edge

settings where decentralized and privacy-conscious Al has the benefit of lightweight

implementation.

17. SUMMARY OF FINDINGS

The paper proves that Al inference can be
applied effectively with the help of serverless
computing in high-performance data analysis
(HPC) in clouds. It always achieved a low-
latency, high-throughput, and cost-efficiency
over containers and VMs especially on
lightweight and stateless workloads, like NLP
and recommendation systems. Pay-as-you-go
serverless, coupled with its near-instant
scalability = characteristics, ~makes it an
appealing choice to organizations that want to
use Al services at scale without a big

investment in infrastructure overhead.

International Research Journal of Engineering & Applied Sciences | irjeas.org

However, the findings also prove that such
complex AI/ML tasks as deployment retain
their relevance in traditional deployment
models. The ones that need persistent state or
the specialized dedicated graphics processing
or the ones that take a long time to complete
will still be better placed in containers or VMs.
Such models offer more control and stability,
but at a greater cost of operation. In this way,
the results state that to identify the most
suitable ~ workload = deployment model,
serverless is the best approach to use when
dealing with the dynamic inference role,
whereas more prolific applications prefer the

use of conventional architecture.
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4. RECOMMENDATIONS

e  Prefer serverless for real-time, bursty workloads.

It offers rapid scalability and minimal latency, making it suitable for dynamic Al inference. The pay-

per-use model further reduces idle infrastructure costs.

e  Use containers for semi-persistent, moderately complex tasks.

They balance performance with flexibility, supporting workloads that need partial persistence.

Containers also simplify deployment in microservices-based pipelines.

e Opt for VMs when persistent infrastructure and manual control are needed.

VMs ensure stable environments for long-running or GPU-intensive tasks. They remain useful where

regulatory or legacy system requirements demand full control.

18. CONCLUSION

This

serverless,

evaluated
VM-based
deployments for AI/ML workloads in high-

research  systematically

container, and
performance cloud environments, focusing on

latency, throughput, scalability, and cost-
The
benchmarking multiple workloads, including
NLP,

recommendation

efficiency. methodology  involved

and

varying
realistic

image classification,

systems, under

concurrency levels to capture
performance behaviors. Results confirmed that
serverless architectures provide compelling
advantages, with the lowest latency of 84 ms
in NLP inference compared to 106 ms for
containers and 137 ms for VMs. Serverless also

achieved the highest throughput of 1000

19. FUTURE SCOPE

This paper affirms the viability of serverless
architecture as regards AI/ML inference in
HPC environments; several prime areas of
activity can be identified. One of them is the
introduction of GPU support to serverless
systems, which will allow them to be applied
to computationally expensive tasks such as
training deep learning models and to large-
the

introduction of the real-time akin scaling plans

scale video detection. Besides it,
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150

outperforming containers (900 req/sec) and

requests/sec at concurrent  users,
VMs (800 reqg/sec). In terms of economic
the Total Cost of

Ownership (TCO) was significantly lower for

efficiency, one-year
serverless ($28,000) compared to containers
($36,000) and VMs ($47,000). Although a cold-
start latency of approximately 300 ms was
observed, this drawback was largely mitigated
under concurrent workloads, making it a
trade-off. Owverall,

democratizes Al deployment by lowering

manageable serverless
operational costs and simplifying architecture,
while traditional models remain valuable for
GPU-intensive or long-running tasks that
demand persistent infrastructure and manual

control.

could provide the opportunity to avoid the
the

tendency in the workload, by imminently

functionality and intuitively predict

forecasting the operation management cold-
start overheads. This would cause serverless
application to be more suitable in truly low
latency applications such as autonomous
systems and trading finance. Besides the
inference power, we can also consider a large
sonnet of Al workloads such as video analysis
when expanding the experiment as another

method of learning to more about the
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capability of serverless. This can also provide

new opportunities

to decentralized and

privacy-conscious Al applications and can also
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